
Nicholas Tierney

Quarto for Scientists

Table of contents

About this 9

About this 9
Why write this as a book? . 10
How to use this book . 10
Licence . 11

License 13

License 13

1 Installation 15
1.1 Overview . 15
1.2 Questions . 15
1.3 Software Setup . 15

1.3.1 R . 15
1.3.2 RStudio . 16
1.3.3 Quarto . 16

1.4 Checking you are up to date 16
1.5 A note on PDF . 16

1.5.1 PDF / LaTeX Pain . 16
1.5.2 Problem solving with LaTeX 17

1.6 Test Script . 17

2 Why Quarto 19
2.1 Overview . 19
2.2 Questions . 19
2.3 Objectives . 19
2.4 Reproducibility is a problem 20
2.5 Literate programming is a partial solution 20
2.6 Markdown as a new player to legibility 21

2.6.1 A brief example of markdown 21

3 What about Rmarkdown? 25

4 Quarto helps complete the solution to the reproducibility
problem 29

3

4 0 Contents

4.1 Summary . 34
4.2 Learning more . 34

5 RStudio, What and Why 35
5.1 Overview . 35
5.2 Questions . 35
5.3 Objectives . 35
5.4 What is RStudio, and why should I use it? 35
5.5 Learning more . 37

6 Workflow 39
6.1 Overview . 39
6.2 Questions . 39
6.3 Objectives . 40
6.4 When you start a new project: Open a new RStudio project 40

6.4.1 So what does this do? 40
6.5 What is a file path? . 41
6.6 Is there an answer to the madness? 42
6.7 The “here” package . 43
6.8 Remember . 44

7 Summary 47

8 Using Quarto 49
8.1 Overview . 49
8.2 Questions . 49
8.3 Objectives . 49
8.4 The anatomy of a Quarto document 50

8.4.1 Metadata . 50
8.4.2 Text . 50
8.4.3 Code . 51

8.5 R . 52
8.6 python . 52
8.7 julia . 52

8.7.1 Chunk names . 53
8.8 Code chunk options . 53

8.8.1 Inline code . 54
8.9 Creating a Quarto document 55
8.10 Working with a Quarto document 55
8.11 Nick’s Quarto starter pack 56

9 HTML, PDF, and Word (and more!) 59
9.1 Overview . 59
9.2 Questions . 59
9.3 Objectives . 59
9.4 How do I convert to HTML, PDF, or Word? 59

0.0 Contents 5

9.4.1 A note on workflow with Quarto: HTML first,
PDF/word later . 60

9.5 How to make a HTML page “self contained” 60

10 Keyboard Shortcuts 63
10.1 Overview . 64
10.2 Questions . 64
10.3 Objectives . 64
10.4 Table of Common Shortcuts 64
10.5 Further Reading . 65

11 Figures, Tables, Captions. 67
11.1 Overview . 67
11.2 Questions . 67
11.3 Objectives . 67
11.4 Tables . 67

11.4.1 Demonstrating using tables 68
11.5 Figures . 70

11.5.1 Adding multiple (sub) figures and (sub) captions . . . 72
11.6 Inserting images . 73
11.7 Summary . 75

12 Customising your figures 77
12.1 Overview . 77
12.2 Questions . 77
12.3 Objectives . 77
12.4 Which chunk options should you care about for this? 78
12.5 Setting global options . 78
12.6 Altering where figures are saved to 79
12.7 Further Reading . 80

13 Math 83
13.1 Overview . 83
13.2 Questions . 83
13.3 Anatomy of Equations . 83
13.4 Example math commands . 84
13.5 Further Reading: . 86

14 Citing Figures, Tables & Sections 87
14.1 Overview . 88
14.2 Questions . 88
14.3 Objectives . 88
14.4 How to refer to tables and figures in text? (demo) 88
14.5 Referencing a table . 92
14.6 Other things you can cross/reference 93
14.7 Referencing a section . 94

6 0 Contents

15 Citing Articles & Bibliography Styles 95
15.1 Overview . 95
15.2 Questions . 95
15.3 Objectives . 95
15.4 How to cite things . 96

15.4.1 What is a .bib file? . 96
15.4.2 And how do I generate these .bib files? 96

15.5 How to change the bibliography style 98
15.6 How to move the bibliography location 99
15.7 How to not print / suppress the bibliography? 99

16 Captioning and referencing equations 101
16.1 Overview . 101
16.2 Questions . 101

16.2.1 Numbering equations 101
16.3 Other equation-adjacent referencing 102

17 Common Problems with Quarto (and some solutions) 103
17.1 More practice? . 103
17.2 Avoiding problems . 103
17.3 The errors . 104

17.3.1 Python not found . 104
17.3.2 No julia . 105
17.3.3 “Duplication”: Duplicated chunk names 105
17.3.4 “Not what I ordered”: Objects not created in the right

order . 106
17.3.5 Forgotten Trails I: Missing “(”, or “}” 107
17.3.6 “Forgotten Trails II”: Chunk option with trailing “, or

not input . 109
17.3.7 “The Path Not Taken” File path incorrect 110
17.3.8 “Spolling I” Incorrectly spelled chunk options 110
17.3.9 “Spolling II” Incorrectly spelled chunk option inputs . 113
17.3.10“The Legend of Link I”: Your images in don’t

work. 113
17.3.11 LaTeX errors . 114
17.3.12 I want to include inline R code verbatim to show an

example . 114
17.3.13 My Figure or Table isn’t being cited 115
17.3.14::: {.cell} appears in my quarto document 115

18 Different Outputs and Extensions 117
18.1 Alternative output formats 117

18.1.1 Slideshows / Presentations 117
18.1.2 Quarto Manuscripts 117
18.1.3 Quarto Extensions . 118

0.0 Contents 7

19 Next Steps 119
19.1 Learn how to use git and github 119
19.2 Learn how to make reproducible examples 119

20 References 123

21 Acknowledgements 125

Appendices 127

A Visual mode 127

B Using Zotero with Quarto 129

C Templates 131
C.1 Controlling the outputs . 131

C.1.1 Options for HTML . 131
C.1.2 Options for PDF . 131
C.1.3 Options for Word . 131

C.2 How do I set options specific to each output 131

D FAQ 133
D.1 How can I include a screenshot of an interactive graphic in PDF

or Word? . 133

E HTML document extensions 135
E.0.1 Adding Tab sets . 135
E.0.2 Floating table of contents 135

About this

This is a book on using Quarto for writing and document preparation, aimed
for scientists. It was initially developed as a half day workshop, “Rmarkdown
for scientists”. This focusses on Quarto, which is a next-generation rmarkdown.
It is now developed into a resource that will grow and change over time as a
living book.

This book aims to teach the following:

• Getting started with your own Quarto document
– Using Rstudio
– Visual Studio Code

• Improve workflow:
– RStudio

∗ Demonstrate rstudio projects
∗ Using keyboard shortcuts

– Quarto projects
• Export your Quarto documents to PDF, HTML, and Microsoft Word
• Better manage figures and tables

– Reference figures and tables in text so that they dynamically update
– Create captions for figures and tables
– Change the size and type of figures
– Save the figures to disk when rendering a document

• Work with equations
– Inline and display
– Caption equations
– Reference equations

• Manage bibliographies
– Cite articles in text
– Generate bibliographies
– Change bibliography styles

• Debug and handle common errors with Quarto
• Next steps in working with Quarto:

– How to extend yourself to other formats, such as slides, websites,
books, and more

9

https://rmd4sci.njtierney.com/
https://rmd4sci.njtierney.com/

10 0 About this

Why write this as a book?
This book started out its first life being around rmarkdown. There are many
great books on R Markdown and it’s various features, such as “Rmarkdown:
The definitive guide”, “bookdown: Authoring Books and Technical Documents
with R Markdown”, and “Dynamic Documents with R and knitr, Second edi-
tion”, and Yihui Xie’s thesis, “Dynamic Graphics and Reporting for Statis-
tics”.

With the release of Quarto, I wanted to translate the materials I developed
in “Rmarkdown for scientists” to cover the same material. Here are some
resources that I really liked for learning Quarto:

• The Quarto “get started” guide
• The Quarto guide “Quarto manuscripts”
• The Quarto chapter in “R for data science”
• Making shareable documents with Quarto from, from OpenScapes
• Alison Hill’s blog post: “we don’t talk about Quarto”
• Mine Çentinkaya-Rundel’s talk “Quarto for academics”

While the Quarto guide is extensive, and indeed their “Quarto manuscripts”
guide covers a lot of the ground in this book.

So, why write a book?

Good question. The answer is that writing this as a book provides a nice way to
structure the content in the form of a workshop, in a way suitable for learning
in a few hours. It is not to say that there aren’t already great resources out
there; there are. It is instead adding to the list of other useful information
out there on the internet. I considered the Rmarkdown for Scientsts book and
course a success, and it helped myself and others understand and better use
rmarkdown. So I guess, to answer a question with another question:

Why NOT write this as a book?

How to use this book
This book was written to provide course materials for a half day course on
Quarto

We worked through the following sections in the book in a half day:

• why use Quarto
• installation

https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/bookdown/
https://bookdown.org/yihui/bookdown/
https://www.crcpress.com/Dynamic-Documents-with-R-and-knitr/Xie/p/book/9781498716963
https://www.crcpress.com/Dynamic-Documents-with-R-and-knitr/Xie/p/book/9781498716963
https://lib.dr.iastate.edu/etd/13518/
https://lib.dr.iastate.edu/etd/13518/
https://posit.co/blog/announcing-quarto-a-new-scientific-and-technical-publishing-system/
https://quarto.org/docs/get-started/hello/rstudio.html
https://quarto.org/docs/manuscripts/
https://r4ds.hadley.nz/quarto
https://openscapes.github.io/quarto-website-tutorial/
https://www.apreshill.com/blog/2022-04-we-dont-talk-about-quarto/
https://quarto.org/docs/blog/posts/2023-05-22-quarto-for-academics/
installation

0.0 Licence 11

• what is RStudio?
• suggested workflow and hygiene
• how to use Quarto
• using Quarto with pdf, html, and Word
• what are some useful keyboard shortcuts
• adding captions to tables and figures
• changing figures
• adding mathematics
• citing figures and tables
• changing citations and styles

With the remaining sections being used as extra material, or have since been
written after the course:

• fixing some common problems in Quarto
• what are some alternative outputs of Quarto?
• where to go next?
• suggested references

Course materials can be downloaded by using the following command from
the usethis package:
usethis::use_course("njtierney/qmd4sci-materials")

Licence
This work is licensed under a Creative Commons Attribution-NonCommercial
4.0 International License.

License

This work is licensed under a Creative Commons Attribution-NonCommercial
4.0 International License.

13

1
Installation

In this section, the aim is to have everyone setup with R, RStudio, and Quarto

1.1 Overview
• Duration 15 minutes

1.2 Questions
• How do I install R?
• How do I install Quarto?
• How do I install LaTeX in a sane way?

1.3 Software Setup
1.3.1 R
1.3.1.1 Windows

https://cloud.r-project.org/bin/windows/

1.3.1.2 MacOS

https://cloud.r-project.org/bin/macosx/

1.3.1.3 Linux

https://cloud.r-project.org/bin/linux/

15

https://cloud.r-project.org/bin/windows/
https://cloud.r-project.org/bin/macosx/
https://cloud.r-project.org/bin/linux/

16 1 Installation

1.3.2 RStudio
https://posit.co/download/rstudio-desktop/#download

1.3.3 Quarto
Quarto installation page

1.4 Checking you are up to date
To ensure you are up to date, run the following script to install the packages.
install.packages("quarto")
install.packages("knitr")
install.packages("here")
install.packages("tidyverse")
install.packages("broom")
install.packages("fs")
install.packages("usethis")

1.5 A note on PDF
Quarto documents can be compiled to PDF, which is a great feature. In order
to convert the documents to PDF, they use a software called LaTeX (pro-
nounced la-tek or lay-tek).

Installing LaTeX is thankfully handled when you install Quarto, as Quarto
includes a built-in Latexmk engine.

1.5.1 PDF / LaTeX Pain
Installing LaTeX can be a pain, but thankfully Yihui Xie has put a lot of time
and energy into making an easier way to install it - tinytex. tinytex is an
R package that installs a sane, lightweight (<200Mb) version of LaTeX.

If you are running into issues rendering a PDF, you can try the following:
tinytex::install_tinytex()

If you get the following error, this is good! As it means that TeX has already
been installed:

https://posit.co/download/rstudio-desktop/#download
https://quarto.org/docs/get-started/
https://www.latex-project.org/
https://quarto.org/docs/output-formats/pdf-engine.html#latexmk
https://quarto.org/docs/output-formats/pdf-engine.html#latexmk
https://yihui.name/tinytex/pain/
https://yihui.name/tinytex/

1.6 Test Script 17

Error: Detected an existing tlmgr at /usr/local/bin/tlmgr. It seems TeX Live has been installed (check tinytex::tinytex_root()). You have to uninstall it, or use install_tinytex(force = TRUE) if you are sure TinyTeX can override it (e.g., you are a PATH expert or installed TinyTeX previously).

Alternatively, you can run the following from the terminal
quarto install tinytex
follow the prompts from here

1.5.2 Problem solving with LaTeX
If you have any problems with installing tinytex, I recommend you check out
the tinytex FAQ page.

1.6 Test Script
You should be able to run the following code on your machine
library(quarto)
library(knitr)
library(here)
library(tidyverse)
library(broom)
library(fs)
library(usethis)

https://yihui.name/tinytex/faq/

2
Why Quarto

The goal of this section is to briefly discuss why we want to learn Quarto, the
benefits, and the barriers to using it.

2.1 Overview
• Teaching 3 minutes
• Exercises 5 minutes

2.2 Questions
• What is the value in a reproducible report?
• What is Markdown?
• Can I combine my software and my writing?

2.3 Objectives
• Learn how to use Markdown
• Think about why you want to use Markdown

Your Turn

1. Why are we here Form small groups of 2-4 with your neigh-
bours and discuss how you expect learning Quarto might ben-
efit you.

19

https://www.markdowntutorial.com/

20 2 Why Quarto

2.4 Reproducibility is a problem
It is unfortunately a common, seemingly evergreen problem that a lot of people
cannot reproduce scientific work. This might appear to be a “current” problem,
but it has indeed been a problem throughout a lot of scientific history. To
illustrate this, here’s a nice article by Rich FitzJohn, Reproducible research
is still a challenge, which was written 10 years ago, in 2014, and provides a
list of the challenges and lessons learned in making research reproducible. The
list is still relevant. This problem isn’t completely solved. But, we can make
it easier to solve, to get further.

Reproducibility isn’t just something that impacts a few people, and it’s not
cheap. A 2010 estimate stated that in the biomedical industry, in the USA,
irreproducibility (not being able to reproduce a given piece of work) costs $28
Billion dollars annually 1. That was one country, one field, and one year.

So what can we do about it?

2.5 Literate programming is a partial solution
The idea of literate programming shines some light on this dark area of science.
This is an idea from Donald Knuth where you combine your text with your
code output to create a document. This is a blend of your literature (text), and
your programming (code), to create something that you can read from top to
bottom. Imagine your paper - the introduction, methods, results, discussion,
and conclusion, and all the bits of code that make each section. With Quarto,
you can see all the pieces of your data analysis all together.

Some history: Quarto, Rmarkdown, Sweave

Literate programming was a popular idea, and it has had some inter-
esting discussion and contributions over the years. Notably, in the R
ecosystem, the Sweave, (The S language + weaving together text and
code) program provided a way to write text and code together. As with
any technology, there were some speedbumps with using Sweave, and
some of the reasons we are not teaching it now is because:

• It uses a form of LaTeX, which provides great flexibility at the cost of
complexity.

1The article, Freedman, 2010, Heard via Garret Grolemund’s great talk

https://github.com/richfitz
https://ropensci.org/blog/2014/06/09/reproducibility/
https://ropensci.org/blog/2014/06/09/reproducibility/
https://en.wikipedia.org/wiki/Donald_Knuth
https://en.wikipedia.org/wiki/Sweave
https://en.wikipedia.org/wiki/S_(programming_language)
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002165
https://www.youtube.com/watch?v=HVlwNayog-k

2.6 Markdown as a new player to legibility 21

• Printing figures involves additional work
• There isn’t a way to save (cache) your work. Every analysis has to be

repeated from start to finish. This was time consuming.

2.6 Markdown as a new player to legibility
In 2004, John Gruber, of daring fireball created Markdown, a sim-
ple way to create text that rendered into an HTML webpage. The
core idea was that you could write plain text (not text inside a MS
Word/WordPerfect/Pages/Proprietary Format Document), and it would look
readable, then get rendered into HTML.

The idea took off.

2.6.1 A brief example of markdown
2.6.1.1 Markdown text

- bullet list
- bullet list
- bullet list

1. numbered list
2. numbered list
3. numbered list

__bold__, **bold**, _italic_, *italic*

> quote of something profound

```r
# computer code goes in three back ticks
1 + 1
2 + 2
image(volcano)
```

2.6.1.2 Rendered result

• bullet list
• bullet list
• bullet list

https://en.wikipedia.org/wiki/John_Gruber
https://daringfireball.net/
https://en.wikipedia.org/wiki/Markdown

22 2 Why Quarto

1. numbered list
2. numbered list
3. numbered list

bold, bold, italic, italic

quote of something profound
computer code goes in three back ticks
1 + 1

[1] 2
2 + 2

[1] 4
image(volcano)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

With very little marking up, we can create rich text, that actually resembles
the text that we want to see.

Some other nice features of Markdown include:

Feature Markdown | rendered
superscript 2^nd^ | 2nd

subscript CO~2~ | CO2
strikethrough ~~mistake~~ | mistake
links [text](https://quarto.org/) | text
links <https://quarto.org/> | https://quarto.org/)

https://quarto.org/
https://quarto.org/)

2.6 Markdown as a new player to legibility 23

Feature Markdown | rendered
images ![alternative text](link-to-image) | (cannot render in

a table)

For more examples and details of using markdown in Quarto, see the official
Quarto “Markdown Basics” documentation.

https://quarto.org/docs/authoring/markdown-basics.html

3
What about Rmarkdown?

Issues around Sweave led to the development of knitr, and subsequently
Rmarkdown, which used the knitr engine. You could run more than R code
in rmarkdown, in fact there are over 60 engines available, from awk and bash,
to haskell, perl, php, sql, scala, stata, javascript, python, julia, and even C.

• Through rmarkdown there were many approaches to document processing,
such as bookdown for books, blogdown for blogs and websites, xaringan for
slide decks.

However, there are a few points of friction:

• You need to call it from R to use it. No problem for R users, but what if
you use python? Or Julia? Or javascript? If you are a python user, using R
to use python just might not be in your workflow.

• There are great packages that provide extensions, such as blogdown for blogs,
bookdown for books, and xaringan for slides. Each of these systems is an
iteration towards something awesome, and it’s only natural they might be a
little bit different. Overall, there are differences between these systems that
might cause stumbles.

• Quarto, instead of being an R package, is a separate piece of software, that
you can call from the command line (terminal). This means other pieces
of software can use it to create their own literate programming documents.
Well, that’s my understanding.

Here are some diagrams to illustrate this point:

25

https://yihui.org/knitr/
https://rmarkdown.rstudio.com/
https://bookdown.org/yihui/rmarkdown/language-engines.html
https://bookdown.org/yihui/blogdown/
https://bookdown.org/
https://github.com/yihui/xaringan

26 3 What about Rmarkdown?

Figure 3.1: Rmarkdown can talk to Python, but it works from within R

In rmarkdown, we are working in rmarkdown, and that uses knitr to talk to
R and handle the document generation:

But with Quarto, we have this general interface, where Quarto can talk to
different programming languages. Not pictured, but the “R engine” is in fact,
knitr:

Figure 3.2: Quarto is a separate program

3.0 27

Converting Rmarkdown to Quarto

One of the big things that is different between Rmarkdown and Quarto
are the chunk options. In Rmarkdown they are in the chunk header,
and in quarto they are in the body of the function. To help change these
over appropriately, you can run this code, which will rewrite the chunk
headers.
knitr::convert_chunk_header(
input = "paper.qmd",
output = identity

)

Your Turn

1. Learn to use Markdown In your small groups, spend five
minutes working through this brief online Markdown tutorial

https://www.markdowntutorial.com/

4
Quarto helps complete the solution to the
reproducibility problem

So, how do we combine this with our R code, into a literate programming
environment?

Quarto provides an environment where you can write your complete analysis.
It weaves your text, and code, and its output together into a single document.

For example, look at the following report:

29

30 4 Quarto helps complete the solution to the reproducibility problem

How did we generate it?

title: "Exploring gapminder"
author: "Nicholas Tierney"
format: html

4.0 31

```{r}
#| label: library
#| message: false
library(tidyverse)
library(broom)
```

```{r}
#| label: data-read-in
data <- read_csv(here::here("data/oz_gapminder.csv"))
```

Introduction

let's look at the lifespan

```{r}
#| label: hist-life-exp
hist(data$lifeExp)
```

Let's fit a simple linear model of the effect of year on life expectancy

```{r}
#| label: example-lm
fit <- lm(lifeExp ~ year, data = data)
fit
```

And let's look at the coefficient table:

```{r}
#| label: coef-table
library(broom)
fit_coef <- tidy(fit)
knitr::kable(fit_coef,

caption = "A table of the coefficients")
```

The effect of year on life expectancy is `{r} fit_coef$estimate[2]`.

We render this code and it creates this report!

32 4 Quarto helps complete the solution to the reproducibility problem

It has a plot, it has a table, we even refer to some of the values in the text -
the last line of the report looks at the effect of year.

But what if the data changes? At the moment we are looking at only Australia
- say we get the full dataset, what happens then?

Say you’d created your report by hand in microsoft word, and with a graphical
user interface software, you would need to:

1. Go back to the GUI, re run the analysis
2. Import the results into Excel
3. Create your graph
4. Copy the graph into Word
5. Copy the results of the coefficients into the text
6. Copy the results of the coefficient table into the text.

This is painful.

And what if someone wants to know exactly how you did your analysis?

This process isn’t exactly sharable.

But if you did it in Quarto?

Just update the data, and render the document again, and get an updated
document:

4.1 33

The results are updated!

And we just pointed it to some different data. Then re-rendered it.

That’s it.

That is why we use Quarto

34 4 Quarto helps complete the solution to the reproducibility problem

4.1 Summary
In this section we’ve learned about:

• What the value is in a reproducible report
• What is Markdown
• How to combine software and writing
• How to use Markdown

4.2 Learning more
• Posit’s Quarto cheatsheet

https://rstudio.github.io/cheatsheets/quarto.pdf

5
RStudio, What and Why

5.1 Overview
• Teaching 5 minutes
• Exercises 2 minutes

5.2 Questions
• What is RStudio?
• Why should I use RStudio?
• What features should I change?

5.3 Objectives
• Get familiarised with RStudio
• Get set up with not storing the RStudio workspace
• Download the course materials for the workshop

5.4 What is RStudio, and why should I use it?
If R is the engine and bare bones of your car, then RStudio is like the rest
of the car.

The engine is super critical part of your car. But in order to make things
properly functional, you need to have a steering wheel, comfy seats, a radio,
rear and side view mirrors, storage, and seatbelts. RStudio is all those niceties

35

36 5 RStudio, What and Why

The RStudio layout has the following features:

• On the upper left, the Quarto script
• On the lower left, the R console
• On the lower right, the view for files, plots, packages, help, and viewer.
• On the upper right, the environment / history pane

Figure 5.1: A screenshot of the RStudio working environment.

We saw a bit of what an Quarto script does.

• The R console is the bit where you can run your code.
• The file/plot/package viewer is a handy browser for your current files, like

Finder, or File Explorer.
• Plots are where your plots appear, you can view packages, see the help files.
• The environment / history pane contains the list of things you have created,

and the past commands that you have run.

Your Turn: RStudio default options

To first get set up, I highly recommend changing the following setting
Tools > Global Options (or Cmd + , on macOS)
Under the General tab:

• For workspace:
– Uncheck restore .RData into workspace at startup.
– Save workspace to .RData on exit : “Never”.

5.5 Learning more 37

• For History:
– Uncheck “Always save history (even when not saving .RData).
– Uncheck “Remove duplicate entries in history”.

Figure 5.2: Setting the options right for RStudio, so you don’t restore
previous sessions work, and don’t save it either.

This means that you won’t save the objects and other things that you
create in your R session and reload them. This is important for two
reasons

1. Reproducibility: you don’t want to have objects from last
week cluttering your session

2. Privacy: you don’t want to save private data or other things
to your session. You only want to read these in.

Your “history” is the commands that you have entered into R.
Additionally, not saving your history means that you won’t be relying
on things that you typed in the last session, which is a good habit to
get into!

5.5 Learning more
• RStudio IDE cheatsheet

https://github.com/rstudio/cheatsheets/blob/main/rstudio-ide.pdf

6
Workflow

Before we start with Quarto, we need to make sure that you understand
file storage hygiene.

We can prevent unexpected problems if we can maintain an order to your
files, paths, and directories. A common problem that arises is R not knowing
where a certain file is. For example, we get the error:
read.csv("my-very-important-data-file-somewhere.csv")

Warning in file(file, "rt"): cannot open file
'my-very-important-data-file-somewhere.csv': No such file or directory

Error in file(file, "rt"): cannot open the connection

Because R doesn’t know where "my-very-important-data-file-somewhere.csv"
is.

Practicing good file storage hygiene will help maintain an order to files, paths,
and directories. This will make you more productive in the future, because
you’ll spend less time fighting against file paths.

Not sure what a file path is? We explain that as well.

6.1 Overview
• Teaching 10 minutes
• Exercises 10 minutes

6.2 Questions
• Where should I put all my files?
• What is an RStudio project, anyway?
• What is a file path?

39

40 6 Workflow

6.3 Objectives
• Understand what a file path is
• Set up an RStudio Project to organise your work
• Put some data in your project to set up the next tasks

Your Turn

In groups of 2-4 discuss:

1. What your normal “workflow” is for starting a new project
2. Possible challenges that might arise when maintaining your

project

6.4 When you start a new project: Open a new RStudio
project

This section is heavily influenced by Jenny Bryan’s great blog post on project
based workflows.

Sometimes this is the first line of an R Script or R markdown file.
setwd("c:/really/long/file/path/to/this/directory")

Question

What do you think the setwd code does?

6.4.1 So what does this do?
This says, “set my working directory to this specific working directory”.

It means that you can read in data and other things like this:
data <- read_csv("data/mydata.csv")

Instead of
data <- read_csv("c:/really/long/file/path/to/this/directory/data/mydata.csv")

So while this has the effect of making the file paths work in your file, it

https://www.tidyverse.org/articles/2017/12/workflow-vs-script/
https://www.tidyverse.org/articles/2017/12/workflow-vs-script/

6.5 What is a file path? 41

is a problem. It is a problem because, among other things, using setwd() like
this:

• Has 0% chance of working on someone else’s machine (this could include
you in 6 months!)

• Your file is not self-contained and portable. (Think: “What if this folder
moved to /Downloads, or onto another machine?”)

So, to get this to work, you need to hand edit the file path to your machine.

This is painful.

When you do this all the time, it gets old, fast.

6.5 What is a file path?
This might all be a bit confusing if you don’t know what a file path is. A file
path is the machine-readable directions to where files on your computer live.
So, the file path:

/Users/njtierney/Desktop/qmd4sci-materials/demo.R

Describes the location of the file “demo.R”. This could be visualised as:

users
��� njtierney

��� Desktop
��� qmd4sci-materials

��� demo.R << THIS IS THE FILE HERE
��� exercises
��� exploratory-data-analysis

��� eda-document.qmd
��� eda-script.R

��� data
��� gapminder.csv

So, if you want to read in the gapminder.csv file, you might need to write
code like this:
gapminder <- read_csv("/Users/njtierney/Desktop/qmd4sci-materials/data/gapminder.csv")

As we now know, this is a problem, because this is not portable code. It is
unlikely someone else will have the gapminder.csv data stored under the
folders, "Users/njtierney/Desktop".

If you have an RStudio project file inside the qmd4sci-materials folder, you
can instead write the following:

42 6 Workflow

gapminder <- read_csv("data/gapminder.csv")

Your Turn

• (1-2 minutes) Imagine you see the following directory path:
"/Users/miles/etc1010/week1/data/health.csv" what are the
folders above the file, health.csv?

• What would be the result of using the following code in
demo-gapminder.qmd, and then using the code, and then moving this
to another location, say inside your C drive?

setwd("Downloads/etc1010/week1/week1.qmd)

6.6 Is there an answer to the madness?
This file path situation is a real pain. Is there an answer to the madness?

The answer is yes!

I highly recommend when you start on a new idea, new research project, paper.
Anything that is new. It should start its life as an rstudio project.

An rstudio project helps keep related work together in the same place.
Amongst other things, they:

• Keep all your files together.
• Set the working directory to the project directory.
• Starts a new session of R.
• Restore previously edited files into the editor tabs.
• Restore other rstudio settings.
• Allow for multiple R projects open at the same time.

This helps keep you sane, because:

• Your projects are each independent.
• You can work on different projects at the same time.
• Objects and functions you create and run from project idea won’t impact

one another.

• You can refer to your data and other projects in a consistent way.

And finally, the big one:

RStudio projects help resolve file path problems, because they auto-
matically set the working directory to the location of the rstudio project.

6.7 The “here” package 43

Let’s open one together.

Your Turn Use your own rstudio project

1. In RStudio, and run the following code to start a new rstudio
project called “qmd4sci-materials”.

usethis::use_course("njtierney/qmd4sci-materials")

2. Follow the prompts to download this to your desktop and then
run the rstudio project. (You can move it later if you like!)

3. You are now in an rstudio project!

Your Turn: open the demo.R file

1. Run the code inside the demo.R file
2. Why does the read_csv code work?
3. Run the code inside the exploratory-data-analysis folder

- eda-script.R.
4. Does the read_csv code work?
5. Run the code inside the exploratory-data-analysis folder

- eda-document.qmd, by clicking the “render” button (we’ll
go into this in more detail soon!)

6. Does it work?

6.7 The “here” package
Although RStudio projects help resolve file path problems, in some cases you
might have many folders in your r project. To help navigate them appropri-
ately, you can use the here package to provide the full path directory, in a
compact way.
here::here("data")

returns

[1] "/Users/nick/github/njtierney/qmd4sci-materials/data"

And
here::here("data", "gapminder.csv")

returns

44 6 Workflow

[1] "/Users/nick/github/njtierney/qmd4sci-materials/data/gapminder.csv"

(Note that these absolute file paths will indeed be different on my computer
compared to yours - super neat!)

You can read the above here code as:

In the folder data, there is a file called gapminder.csv, can you please
give me the full path to that file?

This is really handy for a few reasons:

1. It makes things completely portable
2. Quarto documents have a special way of looking for files, this helps

eliminate file path pain.
3. If you decide to not use RStudio projects, you have code that will

work on any machine

6.8 Remember
If the first line of your R script is

setwd("C:\Users\jenny\path\that\only\I\have")

I will come into your office and SET YOUR COMPUTER ON FIRE �.

– Jenny Bryan

Aside: Creating an RStudio project

You can create an Rstudio project by going to:
file > new project > new directory > new project > name your project
> create project.
You can also click on the create project button in the top left corner

6.8 Remember 45

Then go to new directory, if it is a new folder - otherwise if you have an
existing folder you have - click on existing directory.

Then go to new project

Then write the name of your project. I think it is usually worthwhile
spending a bit of time thinking of a name for your project. Even if it is
only a few minutes, it can make a difference. You want to think about:

• Keeping it short.
• No spaces.
• Combining words.
For example, I had a project looking at bat calls, so I called it screech,
because bats make a screech-y noise. But maybe you’re doing some
global health analysis so you call it “world-health”.
And click “create project”.

46 6 Workflow

7
Summary

In this lesson we’ve:

• Learnt what file paths are
• How to setup an rstudio project
• How to construct full file paths with the here package

47

8
Using Quarto

So far we have covered:

• How to organise your project (RStudio projects!)
• Appropriately refer to data (file storage hygiene!)
• A brief intro into what Quarto is

Now, let’s talk about using Quarto.

8.1 Overview
• Teaching 10 minutes
• Exercises 10 minutes

8.2 Questions
• How should I start an Quarto document?
• What do I put in the YAML metadata?
• How do I create a code chunk?
• What sort of options to I need to worry about for my code?

8.3 Objectives
• Create a Quarto document, do some basic exploration

49

50 8 Using Quarto

8.4 The anatomy of a Quarto document
This is a Quarto document (demo). It has three parts:

1. Metadata (YAML)
2. Text (markdown formatting)
3. Code (code formatting)

8.4.1 Metadata
The metadata of the document tells you how it is formed - what the title
is, what date to put, and other control information. If you’re familiar with
LaTeX, this is kind of like how you specify the many options, what sort of
document it is, what styles to use, and so on at the front matter.

Quarto documents use YAML (YAML Ain’t Markup Language) to provide
the metadata. It looks like this.

title: "An example document"
author: "Nicholas Tierney"
format: html

It starts and ends with three dashes ---, and has fields like the following:
title, author, and format.

title and author are special inputs which place the title and author infor-
mation at the top of the document in large font. They are optional!

format: html tells us we want this to be a HTML formatted document -
you’ll see what this looks like in a moment!

8.4.2 Text
Is markdown, as we discussed in the earlier section,

It provides a simple way to mark up text

8.4.2.1 Markdown

- bullet list
- bullet list
- bullet list

1. numbered list
2. numbered list

https://en.wikipedia.org/wiki/YAML

8.5 The anatomy of a Quarto document 51

3. numbered list

__bold__, **bold**, _italic_, *italic*

> quote of something profound

```r
# computer code goes in three back ticks
1 + 1
2 + 2
```

8.4.2.2 Rendered text

• bullet list
• bullet list
• bullet list

1. numbered list
2. numbered list
3. numbered list

bold, bold, italic, italic

quote of something profound
computer code goes in three back ticks
1 + 1

[1] 2
2 + 2

[1] 4

8.4.3 Code
We refer to code in an Quarto document in two ways:

1. Code chunks, and
2. Inline code.

8.4.3.1 Code chunks

Code chunks are marked by three backticks and curly braces. We put the
letter r inside them to denote them as “r” code chunks, but you can instead
use “python” and “julia” instead:

52 8 Using Quarto

8.5 R

```{r}
#| label: r-chunk-name
# a code chunk
```

8.6 python

```{python}
#| label: py-chunk-name
# a code chunk
```

8.7 julia

```{julia}
#| label: julia-chunk-name
# a code chunk
```

This book currently focusses only on R

Quarto provides support for R, Python, Julia, and Observable, which
are all very powerful and awesome languages! However currently we will
only be focussing on using R in this book. But I want to make sure that
you know you can use python, or Julia, or Observable! More languages
will be supported into the future, I believe.

a backtick is a special character you might not have seen before, it is typically
located under the tilde key (~). On USA / Australia keyboards, is under the
escape key:

8.8 Code chunk options 53

Figure 8.1: image from https://commons.wikimedia.org/wiki/File:ANSI_Keyboard_Layout_Diagram_with_Form_Factor.svg

8.7.1 Chunk names
Every chunk should ideally have a name. As I’ve mentioned earlier, naming
things is hard, but follow these rules and you’ll be fine:

• one word that describes the action (e.g., “read”)
• one word that describes the thing inside the code (e.g, “gapminder”)
• separate words with “-” or “_” (e.g., read-gapminder)

8.8 Code chunk options
You can control how the code is output by changing the code chunk options,
which are written with a #|, called a “hash-pipe”, since # is “hash”, and | is
“pipe”, but might sometimes be called “bar” or “v-bar”.
```{r}
#| label: read-gapminder
#| eval: false
gap <- read_csv("gapminder.csv")
```

A nice feature of Quarto + Rstudio is that they provide code completion when
you start writing the code chunk options, and they will provide options when
hitting “tab”.

In the past Rmarkdown required “TRUE” and “FALSE”, but note that Quarto
always uses true or false in lowercase, and never “yes” or “no”.

The code chunks you need to know about right now are:

54 8 Using Quarto

• eval: true/false Do you want to evaluate the code?
• echo: true/false Do you want to print the code?
• cache: true / false Do you want to save the output of the chunk so it

doesn’t have to run next time?
• include: Do you want to include code output in the final output document?

Setting to false means nothing is put into the output document, but the
code is still run.

You can read more about the options at the official documentation: https:
//quarto.org/docs/computations/execution-options.html

Converting Rmarkdown to Quarto

If you’ve got some Rmarkdown document and you want to change over
the chunk headers, you can run code like this:
knitr::convert_chunk_header(
input = "paper.qmd",
output = identity

)

8.8.1 Inline code
Sometimes you want to run the code inside a sentence. When the code is run
inside the sentence, it is called running the code “inline”.

You might want to run the code inline to name the number of variables or
rows in a dataset in a sentence like:

There are XXX observations in the airquality dataset, and XXX variables.

You can call code “inline” like so:
```{r}
r_heights <- c(153, 151, 156, 160, 171)
r_mean <- mean(r_heights)
```

The mean of these heights is `{r} r_mean`

Which will produce the following sentence:

The mean of these heights is 158.2

Essentially, instead of using three backticks to write multiple lines of code,
you use a single backtick. You can think of this as a backtick being used
inside text for a one liner, whereas creating a code fence with three backticks
indicates something longer.

https://quarto.org/docs/computations/execution-options.html
https://quarto.org/docs/computations/execution-options.html

8.11 Creating a Quarto document 55

There are `{r} nrow(airquality)` observations in the airquality dataset,
and `{r} ncol(airquality)` variables.

Which gives you the following sentence

There are 153 observations in the airquality dataset, and 6 variables.

What’s great about this is that if your data changes upstream, then you don’t
need to work out where you mentioned your data and change that bit of text.
You just render the document and it takes care of these details.

8.9 Creating a Quarto document
• Rstudio menu system
• Explore the template provided by Rstudio
• Compile an Quarto document

8.10 Working with a Quarto document
Demo: Create a Quarto document in rstudio.

Your Turn

1. Use the rstudio project you previously created,
qmd4sci-materials, and open the “01-qmd-examples.qmd”
file.

2. Run some brief summaries of the data in the Quarto docu-
ment:

•hist(data$)
•How big is the data?
•How many countries are there?
•What was the lowest life expectancy in Australia’s His-

tory?
•How about the lowest GDP for Australia?
•Where does Australia rank in GDP in 1997?

56 8 Using Quarto

8.11 Nick’s Quarto starter pack
I highly recommend that each document you write has a certain structure:

• Sets global options in the YAML
• First code chunk manages libraries
• Second code chunk manages functions

For example

title: example
format:
html:
fig-align: center
fig-width: 4
fig-height: 4
fig-format: png

execute:
echo: false
cache: true

```{r}
#| label: library
library(tidyverse)
```

```{r}
#| label: functions
# A function to scale input to 0-1
scale_01 <- function(x){
(x - min(x, na.rm = TRUE)) / diff(range(x, na.rm = TRUE))

}
```

```{r}
#| label: read-data
gapminder <- read_csv(here::here("data", "gapminder.csv"))
```

In the YAML chunk under execute, you set the options that you want to
define globally. In this case, I’ve told Quarto:

• fig-align: center Align my figures in the center

8.11 Nick’s Quarto starter pack 57

• fig-width: 4 & fig-height: 4. Set the width and height to 4 inches.
• fig-format: png. Save the images as PNG
• cache: true. Save the output results of all my chunks so that they don’t

need to be run again.
• echo: false: I don’t want any code printed by setting echo: false.

In the library chunk, you put all the library calls. This helps make it clearer
for anyone else who might read your work what is needed to run this document.
I often go through the process of moving these library calls to the top of
the document when I have a moment, or when I’m done writing. You can also
look at Miles McBain’s packup package to help move these library calls to the
top of a document.

In the functions chunk, you put any functions that you write in the process of
writing your document. Similar to the library chunk, I write these functions
as I go, as needed, and them move these to the top when I get a moment, or
once I’m done. The benefit of this is that all your functions are in one spot,
and you might be able to identify ways to make them work better together,
or improve them separately. You might even want to move these into a new R
package, and putting them here makes that easier to see what you are doing.

In the readr chunk, you read in any data you are going to be using in the
document.

Now, this is my personal preference, and there are definitely other ways to
organise things! But, I find the following benefits:

1. The “top part” of your document contains all the metadata / setup
info. Your global options. You don’t need to specify every single
code chunk.

2. It helps another person get oriented with your work - they know the
settings, the functions used, and the special things that you wrote
(your functions)

3. Remember, “another person” includes yourself in 6 months. You
are always collaborating with your future self. You are always
collaborating with your future self. Say it with me.

Your Turn

1. Update the “01-qmd-example.qmd” Quarto document you
just created, based on the aforementioned steps discussed
above.

https://github.com/milesMcBain/packup

9
HTML, PDF, and Word (and more!)

One of the great things about Quarto is that we can convert it to many
different output types. The top three that you might be most likely to use
are HTML, PDF, and Microsoft Word. There are other formats! But we can
discuss later.

In this section, we are going to briefly discuss how to render to these output
formats, and some things that you might want to do for each of them.

9.1 Overview
• Teaching: 10 minutes
• Exercises: 15 minutes

9.2 Questions
• How do I convert to HTML, PDF, or Word?
• How do I set options specific to each of these?
• How can I include a screenshot of an interactive graphic in PDF or Word?
• How to make a HTML page “self contained”?

9.3 Objectives

9.4 How do I convert to HTML, PDF, or Word?
Here are three ways to do this:

59

https://quarto.org/docs/reference/

60 9 HTML, PDF, and Word (and more!)

1. You can control this in the “render” button

You might notice that depending on the option you select, this changes things
in the YAML - which is another way to control which output you have:

2. You can change the YAML option

title: "Exploring gapminder"
format: html

title: "Exploring gapminder"
format: pdf

title: "Exploring gapminder"
format: docx

3. You can call the quarto render function - from the terminal if you
wish

quarto render example.qmd --to html
quarto render example.qmd --to docx

9.4.1 A note on workflow with Quarto: HTML first,
PDF/word later

It can be easy to get caught up with how your document looks. I highly
recommend avoiding compiling to PDF or word until you really need to. This is
also recommended by the author of rmarkdown and knitr, Yihui Xie. Because
HTML doesn’t have page breaks, this means that you can spend time working
on generating content, and not trying to get figures to line up correctly.

This was a minor revelation to me, to understand that page breaks were the
cause of so much angst and pain. Embrace HTML, I say!

9.5 How to make a HTML page “self contained”
PDFs are great because they are a very Portable Document Format (PDF!).
But HTML can be really awesome as well because:

https://yihui.name/en/2018/07/in-html-i-trust/
https://yihui.name/en/2018/07/in-html-i-trust/

9.5 How to make a HTML page “self contained” 61

• no page breaks
• awesome online interactive data vis
• did I mention no page breaks?

But in order to share a HTML document you’ll need to also typically share a
folder of other figures/files etc.

You can have everything crammed into a single HTML page by setting the
option embed-resources to true:
title: HTML is great
format:
html:
embed-resources: true

Your Turn

1. Using your “01-qmd-examples.qmd” Quarto document you
were using earlier, generate three reports, one as HTML, one
as PDF, and one as microsoft word. Remember, if you are
having PDF problems, see the installation chapter note on
installing LaTeX with the R package, tinytex.

10
Keyboard Shortcuts

Figure 10.1: Imaged sources from https://xkcd.com/2150/

Keyboard shortcuts tend to make our lives easier. Some that you might already
be familiar with in day to day life are: quickly saving (Cmd + S or Ctrl + S),
or Undo (Cmd + Z or Ctrl + Z).

There are many keyboard shortcuts you can access in R, this section provides
a brief tour of them, and why you might want to use them.

63

64 10 Keyboard Shortcuts

10.1 Overview
• Teaching 5 minutes
• Exercises 5 minutes

10.2 Questions
• What sort of keyboard shortcuts should I care about?

10.3 Objectives

10.4 Table of Common Shortcuts
Below is a small table of tasks you can perform with keyboard

Action Windows/Linux Mac
Render document Ctrl + Shift + K Cmd + Shift + K
Insert Chunk Ctrl + Alt + I Cmd + Option + I
Run Current Chunk Ctrl + Alt + C Cmd + Option + C
Jump to
Shift+Alt+J

Cmd+Shift+Option+J

Show Keyboard
Shortcut Reference

Alt+Shift+K Option+Shift+K

Create multiple
cursors

Ctrl + Alt + Up/Down option + control +
Up/Down

Delete the current
line

Ctrl + D Cmd + D

Un/Comment out a
line

Ctrl + Shift + C Cmd + Shift + C

Reformat Section Ctrl + Shift + A Cmd + Shift + A

10.5 Further Reading 65

10.5 Further Reading
• The Rstudio Cheat Sheet has an index of shortcuts.
• This help file has a guide to customising keyboard shortcuts.
• The shrtcts R package for creating new shortcuts.

Your Turn

• In your awesome quarto document
– Practice using the Keyboard Shortcut Reference and find the

keyboard shortcut for inserting a pipe character (%>% or |>)
– Spend 3 minutes practicing these commands.

• Ask Nick to demonstrate some of his favourite shortcut combos
– e.g., multiline cursor, yank lines, copy lines, go to file/function

https://rstudio.github.io/cheatsheets/html/rstudio-ide.html#keyboard-shortcuts
https://support.posit.co/hc/en-us/articles/206382178-Customizing-Keyboard-Shortcuts-in-the-RStudio-IDE
https://github.com/gadenbuie/shrtcts
https://www.njtierney.com/post/2023/12/04/get-good-type-fast/

11
Figures, Tables, Captions.

You need figures and tables in your own writing, whether it be a journal paper,
an internal document, or some documentation. In this section, we discuss how
to add figures and tables into your Quarto document, and how to provide
captions for them.

11.1 Overview
• Teaching 10 minutes
• Exercises 10 minutes

11.2 Questions
• How do I create a figure in Quarto?
• How do I create a table in Quarto?
• How do I add captions for figures and tables?

11.3 Objectives

11.4 Tables
To produce a table, I recommend you use the kable function from the knitr
package.

67

68 11 Figures, Tables, Captions.

Other table R packages

There are many other table making pieces of R packages, such as gt,
formattable, reactable, and flextable). But I think you can get
90% of the way there with kable from knitr, and for the

11.4.1 Demonstrating using tables
kable takes a data.frame as input, and outputs the table into a markdown
table, which will get rendered into the appropriate output format.

For example, let’s say we wanted to share the first 6 rows of our gapminder
data.

This gives us the following output
top_gap <- head(gapminder)

knitr::kable(top_gap)

country continent year lifeExp pop gdpPercap
Afghanistan Asia 1952 28.801 8425333 779.4453
Afghanistan Asia 1957 30.332 9240934 820.8530
Afghanistan Asia 1962 31.997 10267083 853.1007
Afghanistan Asia 1967 34.020 11537966 836.1971
Afghanistan Asia 1972 36.088 13079460 739.9811
Afghanistan Asia 1977 38.438 14880372 786.1134

So how does that work? kable prints out the following:

country	continent	year	lifeExp	pop	gdpPercap
Afghanistan	Asia	1952	28.801	8425333	779.4453
Afghanistan	Asia	1957	30.332	9240934	820.8530
Afghanistan	Asia	1962	31.997	10267083	853.1007
Afghanistan	Asia	1967	34.020	11537966	836.1971
Afghanistan	Asia	1972	36.088	13079460	739.9811
Afghanistan	Asia	1977	38.438	14880372	786.1134

And this then gets rendered as a table. This works for HTML, PDF, and word!

11.4.1.1 Adding captions to a table

Now, say that we wanted to include a caption? We use the caption argument.
This will also automatically number the table (woo! We’ll cover this later).

https://gt.rstudio.com/
https://renkun-ken.github.io/formattable/
https://glin.github.io/reactable/index.html
https://davidgohel.github.io/flextable/index.html

11.4 Tables 69

knitr::kable(top_gap,
caption = "The first 6 rows of the dataset, gapminder")

Table 11.2: The first 6 rows of the dataset, gapminder

country continent year lifeExp pop gdpPercap
Afghanistan Asia 1952 28.801 8425333 779.4453
Afghanistan Asia 1957 30.332 9240934 820.8530
Afghanistan Asia 1962 31.997 10267083 853.1007
Afghanistan Asia 1967 34.020 11537966 836.1971
Afghanistan Asia 1972 36.088 13079460 739.9811
Afghanistan Asia 1977 38.438 14880372 786.1134

Some other useful features of kable include setting the rounding number, with
the digits option.

For example, we could present the first 2 digits of each number like so:
knitr::kable(top_gap,

caption = "The first 6 rows of the dataset, gapminder",
digits = 2)

Table 11.3: The first 6 rows of the dataset, gapminder

country continent year lifeExp pop gdpPercap
Afghanistan Asia 1952 28.80 8425333 779.45
Afghanistan Asia 1957 30.33 9240934 820.85
Afghanistan Asia 1962 32.00 10267083 853.10
Afghanistan Asia 1967 34.02 11537966 836.20
Afghanistan Asia 1972 36.09 13079460 739.98
Afghanistan Asia 1977 38.44 14880372 786.11

There are other options that you can set in kable, but for these options will
get you through a large majority of what you need. For more information on
what kable can provide, see ?knitr::kable.

There are many different ways to produce tables in R. We have cho-
sen to show kable today because kable is minimal, but powerful. If you
want to extend kable to do more, look at kableExtra. For PDF/LaTeX
output, I found the option kableExtra::kable_styling(latex_options =
c("hold_position")) particularly nice to just put the table where it
should be, goshdarnit.

https://cran.r-project.org/web/packages/kableExtra/index.html

70 11 Figures, Tables, Captions.

Your Turn

1. Using the “02-qmd-figures-chunks.qmd”
2. Create a summary of your gapminder data, put it into a table.
3. Add a caption to this table.
4. Set the number of decimals to 2.

11.5 Figures
Printing figures is probably my favourite feature of Quarto. It is actually
relatively straightforward in the case of plots. You provide the plot you want
to show in a code chunk!

Demo using gapminder

For example, I can print a plot of the gapminder data for Australia like
so:
options(tidyverse.quiet = TRUE)
library(tidyverse)

gapminder |>
filter(country == "Australia") |>
ggplot(aes(x = year,

y = lifeExp)) +
geom_point()

11.5 Figures 71

69

72

75

78

81

1950 1960 1970 1980 1990 2000
year

lif
eE

xp

Demo: Captions for figures

Inserting a caption for a figure is a little bit different. The caption argu-
ment is controlled in the chunk option, under the option, fig-cap.
So to insert a figure, we do the following.
```{r}
#| label: gg-oz-gapminder
#| fig-cap: "Life expectancy from 1952 - 2007 for Australia. Life expentancy increases steadily except from 1962 to 1969. We can safely say that our life expectancy is higher than it has ever been!"
library(ggplot2)
library(dplyr)

gapminder |>
filter(country == "Australia") |>
ggplot(aes(x = lifeExp,

y = year)) +
geom_point()

```
Which would produce the following output

72 11 Figures, Tables, Captions.

library(ggplot2)
library(dplyr)

gapminder |>
filter(country == "Australia") |>
ggplot(aes(x = lifeExp,

y = year)) +
geom_point()

1950

1960

1970

1980

1990

2000

69 72 75 78 81
lifeExp

ye
ar

Figure 11.1: Life expectancy from 1952 - 2007 for Australia. Life expen-
tancy increases steadily except from 1962 to 1969. We can safely say
that our life expectancy is higher than it has ever been!

Your Turn

1. Using 02-qmd-figures-chunks.qmd
1. Create a plot
2. Add a figure caption

11.5.1 Adding multiple (sub) figures and (sub) captions
Sometimes you want to add multiple figures that are linked, or slightly different
views of similar data and then reference them as Figure 1A and Figure 1B.
You can do this with layout-ncol and fig-cap, and reference the figures
with @fig-<chunk-name>-1 @fig-<chunk-name>-2. For example:

11.6 Inserting images 73

```{r}
#| label: fig-volcanos
#| layout-ncol: 2
#| fig-cap:
#| - "An image plot of Auckland's Maunga Whau Volcano"
#| - "A contour plot of Auckland's Maunga Whau Volcano"

image(volcano)
contour(volcano)
```

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Figure 11.2: An image plot of Auck-
land’s Maunga Whau Volcano

 100

 100

 110

 110

 110

 110
 120

 130

 140
 150 160

 160

 170

 180

 190

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Figure 11.3: A contour plot of Auck-
land’s Maunga Whau Volcano

We can see the image plot as (@fig-volcanos-1) Figure 11.2 and the contour
plot as @fig-volcanos-2 Figure 11.3.

For more information on this see https://quarto.org/docs/authoring/figures.
html#layout and https://quarto.org/docs/authoring/cross-references.html

11.6 Inserting images
We cannot always generate the graphics that we want - for example, we might
have an image of something that we want to show, or perhaps a nice flowchart
someone else made.

In our case, say we wanted to insert the Statistical Society of Australia logo
into our document, there are two ways we can do this.

1. With markdown syntax
2. with knitr::include_graphics()

https://quarto.org/docs/authoring/figures.html#layout
https://quarto.org/docs/authoring/figures.html#layout
https://quarto.org/docs/authoring/cross-references.html

74 11 Figures, Tables, Captions.

Markdown syntax

The markdown syntax to insert an image is:
![caption](path/to/image){options}

Demo: inserting a logo

So we could insert the new SSA vic logo by doing the following:
```
![The new, gorgeous SSA Logo has a hidden element, can you see it?](https://qmd4sci.njtierney.com/figs/ssa-logo.png)
```
Which would give us the following output:

Figure 11.4: The new, gorgeous SSA Logo has a hidden element, can
you see it?

But say that we want more control over the output, like we want to
center the image, and we want to make it smaller? Then you can use
knitr::include_graphics(), and control the figure alignment using
the options fig-align, and add a caption with fig-cap.

11.7 Summary 75

```{r}
#| label: ssa-logo
#| fig-align: center
#| fig-cap: "The new SSA logo, which is actually a scatterplot, which is super neat!"
knitr::include_graphics(here::here("figs", "ssa-logo.png"))
```

knitr::include_graphics(here::here("figs", "ssa-logo.png"))

Figure 11.5: The new SSA logo, which is actually a scatterplot, which
is super neat!

Controlling image output with css

You can control more features of figures, e.g., sizing, align-
ment, alt text, etc., by using CSS type styling, which you can
read more about here: https://quarto.org/docs/authoring/figures.
html#figure-sizing%60

Your Turn

1. Download the gapminder logo
2. Put it into a new directory called “figs” (at the top level)
3. Insert the image into your “02-qmd-figures-chunks.qmd”

Quarto document around where you introduce gapminder.
4. Try using both markdown syntax, and

knitr::include_graphics().
5. Hint: Remember to refer to the image in the right spot using

here!

11.7 Summary
We’ve now learned how to insert tables, plots, and images into our documents!

https://quarto.org/docs/authoring/figures.html#figure-sizing%60
https://quarto.org/docs/authoring/figures.html#figure-sizing%60
https://www.gapminder.org/wp-content/themes/gapminder2/images/gapminder-logo.svg

12
Customising your figures

When you produce figures, you usually want to tweak them a little bit. A bit
wider, perhaps a bit taller. Perhaps a different image type other than “png”,
because the journal requires “svg” or “jpg”. Maybe you need 600dpi because
you’re going to print it really big.

We can control these features with code chunk options.

In this section, we are going to talk more specifically about how to customise
your figures.

12.1 Overview
• Teaching 10 minutes
• Exercises 10 minutes

12.2 Questions
• How do I change the height and width of a figure?
• How to I change the type of output of a figure? (e.g., PDF, PNG, JPG,

SVG)
• Can I set all the figure features globally?
• How do I save the figures?

12.3 Objectives
• Learn how to set individual figure height, width, aspect, and print size
• Learn how to set global parameters for your chunks
• Get a copy of all of your figures

77

78 12 Customising your figures

12.4 Which chunk options should you care about for
this?

There are many chunk options that control your output, but only a few that
you really need to worry about for your figures:

• fig-align: How do you want your figure aligned? Takes one of the following
inputs: “default”, “center”, “left”, or “right”? (demo)

• fig-cap: Would you like a caption for your figure? It takes a character vector
as input: “My Amazing Graph”

• fig-height & fig-width: How tall and wide would you like your figure in
inches? Each takes one number (e.g., 7, or 9) [Note: these numbers are not
quoted]

For demonstration purposes, let’s take a plot from earlier and show how it’s
output can change.

• with fig-height, fig-width, fig-format:

Your Turn

1. Open exercise exercises/02-qmd-figures-chunks/02-qmd-figures-chunks.qmd
Create three figures, with the respective dimensions
(fig-height and fig-width)

•2x2
•10x10
•4x7

2. Now add to those figures, the following:
•fig-align = "center"

3. Now change the output type to be “svg”

12.5 Setting global options
If we repeat adding the same chunk options for each figure, we might want to
consider setting them globally. We can do this by changing the options in the
YAML:

title: "02-qmd-figures-chunks"
author: "Your Name"
date: 2024/06/23
format:

12.6 Altering where figures are saved to 79

html:
fig-height: 7
fig-width: 7
fig-format: png
fig-dpi: 300

Your Turn

1. Set the global options in the “02-qmd-figures-chunks.qmd”
document to set:

• fig-height
• fig-width
• fig-format

Demo: Keeping your markdown

You can set the options for your figures, which will change how they
appear on the page, but this won’t save the figures anywhere. In order
to save the figures to file, you need to edit the YAML option keep-md:
true:

title: "Awesome report"
author: "You"
format:
html:
keep-md: true

12.6 Altering where figures are saved to
By default, the figures are saved in a folder named after the file, e.g.,

02-qmd-figures-chunks_files/figure-html

If you want to change this location, you can control the specific name of the
folder by setting fig.path like so in the YAML

title: "Awesome report"
author: "You"

80 12 Customising your figures

format:
html:
keep-md: true

knitr:
opts_chunk:
fig.path: folder/for/figures/prefix-

If you do not want a prefix specified, you must end this part with a slash,
e.g.,

title: "Awesome report"
author: "You"
format:
html:
keep-md: true

knitr:
opts_chunk:
fig.path: figures/

(reference: https://github.com/quarto-dev/quarto-cli/discussions/4254)

Your Turn

1. Save your images to a specific directory of your choice

12.7 Further Reading
• Official Quarto documentation on figures

Managing EPS/TIFF/Other multiple image formats

Unfortunately (currently, as far as I can tell) in Quarto it seems you
cannot save to other image formats such as “eps”, “tiff”, and cannot
save to multiple formats at the same time.
If you would like to convert images to a specific format, you could try
using code like the following.

https://github.com/quarto-dev/quarto-cli/discussions/4254
https://quarto.org/docs/computations/r.html#output-formats

12.7 Further Reading 81

library(magick)
library(fs)

List existing file paths matching "png" extension
figures_ls <- dir_ls(
path = "exercises/02-qmd-figures-chunks/02-qmd-figures-chunks_files/",
recurse = TRUE,
glob = "*.png"
)

read images in
library(purrr)
figures <- map(
figures_ls,
\(x) image_read(path = x)

)

create new paths with .TIFF extension
substitute out for another image format like "bmp", "
new_paths <- xfun::with_ext(figures_ls, "tiff")

write new images
walk2(
.x = figures,
.y = new_paths,
\(x, y) image_write(image = x, path = y)

)

13
Math

Want to include equations in your writing? Easy. Quarto supports LaTeX style
equation writing. This section introduces the two types equations, inline, and
display form, as well as numbering equations.

13.1 Overview
• Teaching: 10 minutes
• Exercises: 10 minutes

13.2 Questions
• How to I create an equation?
• LaTeX is funky, what are the basic math commands?

Some History about LaTeX

Equation editing was first made available in TeX, which later become
LaTeX, named after Leslie Lamport.

13.3 Anatomy of Equations
This section shows you some basic equations types that you want to be familiar
with.

Inline equations are referenced by a pair of dollar signs: $.

So this text would have an equation here: $E = mc^2$

83

https://en.wikipedia.org/wiki/Leslie_Lamport

84 13 Math

Generates:

So this text would have an equation here: 𝐸 = 𝑚𝑐2

Display equations are referenced by two pairs of dollar signs:

$$
E = mc^2
$$

Gives:

𝐸 = 𝑚𝑐2

13.3.0.1 Viewing equations

Understanding whether or not you have created the right equation can be
difficult. Rstudio provides previews of your equations in text (demo).

13.4 Example math commands
LaTeX is an amazing language, but understanding how to create the equations
can be (more than) a bit confusing at times. This section demonstrates some
example equations that you might be familiar with.

13.4.0.1 Fractions

$$
\frac{1}{2}
$$

1
2

13.4.0.2 Sub and Super Scripts

$$
Y = X_1 + X_2
$$

𝑌 = 𝑋1 + 𝑋2

$$
a^2 + b^2 = c^2
$$

13.4 Example math commands 85

𝑎2 + 𝑏2 = 𝑐2

13.4.0.3 Square roots

$$
\sqrt{p}
$$

√𝑝
$$
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

𝑥 = −𝑏 ±
√

𝑏2 − 4𝑎𝑐
2𝑎

13.4.0.4 Summations

$$
\sum_{i = 1}^{n}{(\bar{x} - x_i)^2}
$$

𝑛
∑
𝑖=1

(̄𝑥 − 𝑥𝑖)2

13.4.0.5 Bayes Rule

$$
Pr(\theta | y) = \frac{Pr(y | \theta) Pr(\theta)}{Pr(y)}
$$

𝑃𝑟(𝜃|𝑦) = 𝑃𝑟(𝑦|𝜃)𝑃𝑟(𝜃)
𝑃𝑟(𝑦)

$$
Pr(\theta | y) \propto Pr(y | \theta) Pr(\theta)
$$

𝑃𝑟(𝜃|𝑦) ∝ 𝑃𝑟(𝑦|𝜃)𝑃𝑟(𝜃)

86 13 Math

13.4.0.6 Linear Model

$$
Y \sim X\beta_0 + X\beta_1 + \epsilon
$$

𝑌 ∼ 𝑋𝛽0 + 𝑋𝛽1 + 𝜖
$$
\epsilon \sim N(0,\sigma^2)
$$

𝜖 ∼ 𝑁(0, 𝜎2)

Your Turn

1. Add some math to your “02-qmd-figures-chunks.qmd” docu-
ment

13.5 Further Reading:
https://quarto.org/docs/visual-editor/technical.html#equations https:
//oeis.org/wiki/List_of_LaTeX_mathematical_symbols

https://quarto.org/docs/visual-editor/technical.html#equations
https://oeis.org/wiki/List_of_LaTeX_mathematical_symbols
https://oeis.org/wiki/List_of_LaTeX_mathematical_symbols

14
Citing Figures, Tables & Sections

When you’re writing a report, you often refer to a table or figure in text.

Australia’s life expectancy has increased a great deal over the past 50 years
(Figure 1)

69

72

75

78

81

1950 1960 1970 1980 1990 2000
year

lif
eE

xp

Figure 1. Life expectancy from 1952 - 2007 for Australia. Life expectancy
increases steadily except from 1962 to 1969. We can safely say that our life
expectancy is higher than it has ever been!

And sure, this is figure 1…for now.

But what happens if actually, that figure should be moved later in the paper?

You need to do the following:

1. Update the reference to figure 1 in the text.
2. Update the figure 1 caption to not say figure 1.

This is fine.

87

88 14 Citing Figures, Tables & Sections

Once.

But it is never once. After this, it is frustrating, and error prone.

There is a way to solve this, using figure citations, which this lesson discusses.

14.1 Overview
• Teaching 10 minutes
• Exercises 15 minutes

14.2 Questions
• How do I refer to the table or figure in text and link to it?

14.3 Objectives
• Link to tables or figures in text.

14.4 How to refer to tables and figures in text? (demo)
• Tables are referenced in text with @tbl-label
• Figures are references in text with @fig-label

Importantly here, for these two above examples to work, the things that they
are referring to must have the exact label tbl-label and fig-label, respec-
tively. That is, they must have the tbl or the fig part in there!

So, in order to use this referencing style, you must use specific labelling of
your code chunks. For example, if you have some code like this:
```{r}
#| label: example-figure
image(volcano)
```


14.4 How to refer to tables and figures in text? (demo) 89

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Then you cannot reference this figure in text - @example-figure does not
work: ?. We get the error: “example-figure?”.

It would need to have a label like:
```{r}
#| label: fig-example
image(volcano)
```


90 14 Citing Figures, Tables & Sections

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Figure 14.1

Then you can reference it with: @fig-example - Figure 14.1.

Hover your mouse on a reference!

Note the awesome on-hover behaviour for hovering over a reference!

Also note that there are a variety of ways to specify the figure:

• @fig-example: Figure 14.1
• @Fig-example: Figure 14.1
• [Fig @fig-example]: Fig 14.1
• -@fig-example: Figure 14.1

(reference here: https://quarto.org/docs/authoring/cross-references.html#
references)

Your Turn

1. Using “03-qmd-lm-tables-inline-qmd”
1. Convert your output to use fig prefixes to reference fig-

ures

https://quarto.org/docs/authoring/cross-references.html#references
https://quarto.org/docs/authoring/cross-references.html#references

14.4 How to refer to tables and figures in text? (demo) 91

Demo

```{r}
#| label: fig-gg-oz
#| fig-cap: Life expectancy from 1952 - 2007 for Australia. Life expectancy increases
#| steadily except from 1962 to 1969. We can safely say our life expectancy is
#| higher than it has ever been!
library(ggplot2)
library(dplyr)
gapminder %>%
filter(country == "Australia") %>%
ggplot(aes(x = year,

y = lifeExp)) +
geom_point()

```

69

72

75

78

81

1950 1960 1970 1980 1990 2000
year

lif
eE

xp

Figure 14.2: Life expectancy from 1952 - 2007 for Australia. Life ex-
pectancy increases steadily except from 1962 to 1969. We can safely say
our life expectancy is higher than it has ever been!

Australia’s life expectancy has increased a great deal over the past 50
years (See Figure 14.2).

92 14 Citing Figures, Tables & Sections

Your Turn

1. Using “03-qmd-lm-tables-inline-qmd”:
1. Add a new plot in your document and reference it

14.5 Referencing a table
To cite a table, you write the following:

@tbl-chunk-name
```{r}
#| label: tbl-gg-oz-tab
gapminder %>%
filter(country == "Australia") %>%
knitr::kable(caption = "Raw gapminder data for Australia.")

```

Table 14.1: Raw gapminder data for Australia.

country continent year lifeExp pop gdpPercap
Australia Oceania 1952 69.120 8691212 10039.60
Australia Oceania 1957 70.330 9712569 10949.65
Australia Oceania 1962 70.930 10794968 12217.23
Australia Oceania 1967 71.100 11872264 14526.12
Australia Oceania 1972 71.930 13177000 16788.63
Australia Oceania 1977 73.490 14074100 18334.20
Australia Oceania 1982 74.740 15184200 19477.01
Australia Oceania 1987 76.320 16257249 21888.89
Australia Oceania 1992 77.560 17481977 23424.77
Australia Oceania 1997 78.830 18565243 26997.94
Australia Oceania 2002 80.370 19546792 30687.75
Australia Oceania 2007 81.235 20434176 34435.37

See above in Table ?@tbl-tbl-gg-oz-tab.

If you want to move the caption location you can use tbl-cap-location:
<position> to specify the location. By default it is the top.
```{r}
#| label: tbl-gg-oz-tab-bottom
#| tbl-cap-location: bottom



14.7 Other things you can cross/reference 93

gapminder %>%
filter(country == "Australia") %>%
knitr::kable(caption = "Raw gapminder data for Australia.")

```

country continent year lifeExp pop gdpPercap
Australia Oceania 1952 69.120 8691212 10039.60
Australia Oceania 1957 70.330 9712569 10949.65
Australia Oceania 1962 70.930 10794968 12217.23
Australia Oceania 1967 71.100 11872264 14526.12
Australia Oceania 1972 71.930 13177000 16788.63
Australia Oceania 1977 73.490 14074100 18334.20
Australia Oceania 1982 74.740 15184200 19477.01
Australia Oceania 1987 76.320 16257249 21888.89
Australia Oceania 1992 77.560 17481977 23424.77
Australia Oceania 1997 78.830 18565243 26997.94
Australia Oceania 2002 80.370 19546792 30687.75
Australia Oceania 2007 81.235 20434176 34435.37

Table 14.2: Raw gapminder data for Australia.

Reference: https://quarto.org/docs/authoring/cross-references.html#tables
and https://quarto.org/docs/authoring/tables.html#caption-location

14.6 Other things you can cross/reference
You can also reference theorems, code, proofs, and equations! See https:
//quarto.org/docs/authoring/cross-references.html#theorems-and-proofs for
more details.

Your Turn

1. Using “03-qmd-lm-tables-inline-qmd”
1. Create a table in your document and refer to it in text

https://quarto.org/docs/authoring/cross-references.html#tables
https://quarto.org/docs/authoring/tables.html#caption-location
https://quarto.org/docs/authoring/cross-references.html#theorems-and-proofs
https://quarto.org/docs/authoring/cross-references.html#theorems-and-proofs

94 14 Citing Figures, Tables & Sections

14.7 Referencing a section
You can even reference a section in your report: @sec-slug

However, in order to write this, you need to include sec-slug in your mark-
down header, like so:

your amazing header {#sec-slug}

You must also include number-section in your YAML:

title: "example"
number-sections: true

For example, I can refer to the first section (Section Chapter 14) in this doc-
ument by referring to the section as

(Section @sec-start)

because it was written as:

Citing Figures, Tables & Sections {#sec-start}

Demo: Using visual mode

Visual mode is this pretty neat feature, it’s best demonstrated live!

Your Turn

1. Using “03-qmd-lm-tables-inline-qmd”
1. Reference a section in the report.

2. Open up “04-qmd-global-opts-device.qmd” and work through
the tasks there

15
Citing Articles & Bibliography Styles

Now that you are near the end of your data analysis, you want to make sure
that you’ve plugged in the gaps of REF1 REF2 and so on correctly cited the
articles and software you wanted to mention.

15.1 Overview
• Teaching
• Exercises

15.2 Questions
• What sort of things can I cite?
• How do I manage my .bib file?
• How do I change the citation style?

15.3 Objectives
• Provide a bibliography at the end of the document
• Cite articles and packages during the document
• learn how to manage citation styles

95

96 15 Citing Articles & Bibliography Styles

15.4 How to cite things
Citing things in a Quarto document is straightforward, you refer to articles
you want to cite using [@article-handle]. Here, article-handle matches
the article handle in your .bib file.

This .bib file is referred to in the YAML of your document, under the option
bibliography: filename.bib:

title:
author:
output: html_document
bibliography: references.bib

15.4.1 What is a .bib file?
Good question.

.bib is a format for storing references from the heyday of LaTeX. It contains
plain text with reference information for the article. Here’s an example one:

@Book{ggplot2,
author = {Hadley Wickham},
title = {ggplot2: Elegant Graphics for Data Analysis},
publisher = {Springer-Verlag New York},
year = {2016},
isbn = {978-3-319-24277-4},
url = {http://ggplot2.org},

}

15.4.2 And how do I generate these .bib files?
You can use the citation function in R for R itself, and for specific R pack-
ages.

We can get the citation for R with:
citation()

To cite R in publications use:

R Core Team (2025). _R: A Language and Environment for Statistical
Computing_. R Foundation for Statistical Computing, Vienna, Austria.
<https://www.R-project.org/>.

15.4 How to cite things 97

A BibTeX entry for LaTeX users is

@Manual{,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2025},
url = {https://www.R-project.org/},

}

We have invested a lot of time and effort in creating R, please cite it
when using it for data analysis. See also 'citation("pkgname")' for
citing R packages.

And for ggplot2 with
citation("ggplot2")

To cite ggplot2 in publications, please use

H. Wickham. ggplot2: Elegant Graphics for Data Analysis.
Springer-Verlag New York, 2016.

A BibTeX entry for LaTeX users is

@Book{,
author = {Hadley Wickham},
title = {ggplot2: Elegant Graphics for Data Analysis},
publisher = {Springer-Verlag New York},
year = {2016},
isbn = {978-3-319-24277-4},
url = {https://ggplot2.tidyverse.org},

}

For journals or books, you’ll need to get a specific .bib file. Yes, this can be
a bit of a pain, but this is where you need to use a reference management
software like Zotero, Mendeley, papers, or paperpile. The important thing to
to use something. These all allow you to get .bib files of your articles, which
you can then placec in your references.bib file.

Your Turn

1. Using “05-qmd-bib-polish.qmd”
1. Generate a references.bib file to place your citations

https://www.zotero.org/
https://www.mendeley.com/download-desktop/
https://www.papersapp.com/
https://paperpile.com/

98 15 Citing Articles & Bibliography Styles

2. Using the citation() function, generate citations for
the packages we have used, “dplyr”, “ggplot2”, “gap-
minder”, and for the R software, place these in your
references.bib file

3. Reference these in your document
4. Add a final heading in your file called #bibliography
5. Cite the packages you use when you use them
6. hint: https://quarto.org/docs/authoring/footnotes-and-

citations.html
7. hint: look at the names in packages.bib

2. Tidy up the structure, provide some more words around the
introduction and results

3. Render the document

15.5 How to change the bibliography style
OK so now you’ve got your bibliography, but you now need to change it to a
specific journal format. Luckily, this is now pretty easy. You can change your
citation style from the citation style language

Similar to how you referred to your .bib file with bibliography: ref.bib,
you do something similar:

title:
author:
output: html_document
bibliography: references.bib
csl: my_journal.csl

Your Turn

In “05-qmd-bib-polish.qmd”:

1. select your bibliography style to be one from your
favourite journal at the CSL github repo here:
https://github.com/citation-style-language/styles (> 2,600
citations and counting)

2. place this in your rstudio project
3. refer to it in the YAML
4. Render your document and observe your greatness

https://citationstyles.org/

15.7 How to move the bibliography location 99

15.6 How to move the bibliography location
The bibliography is typically placed at the end of the document, so your last
heading should be something like # References. However, if you want to move
it, place the following piece of text in the reference section. For example.

Introduction

References

::: {#refs}
:::

Appendix

This is taken from this section of the Quarto documentation. Note they also
state:

If your bibliography is being generated using BibLaTeX or natbib…the
bibliography will always appear at the end of the document and the #refs
div will be ignored.

15.7 How to not print / suppress the bibliography?
The bibliography can be suppressed with the YAML option
suppress-bibliography

title: "document"
output: html
bibliography: file.bib
suppress-bibliography: true

Your Turn

In “05-qmd-bib-polish.qmd”:

1. Generate a bibliography and an appendix that follows it

https://quarto.org/docs/authoring/footnotes-and-citations.html#bibliography-generation

100 15 Citing Articles & Bibliography Styles

Demo: Use the Visual Editor mode of RStudio

Show off the citation auto-complete magic!
• search for DOIs
• search for R packages
• search pubmed/datacite/more!

16
Captioning and referencing equations

This section introduces how to add captions to equations, and reference them
in text.

16.1 Overview
• Teaching: 5 minutes
• Exercises: 5 minutes

16.2 Questions
• How do I caption an equation?
• How do I reference an equation?

16.2.1 Numbering equations
You can make reference an equation by adding a label starting with #eq- after
the equation $$. For example:

$$
Y \sim X\beta_0 + X\beta_1 + \epsilon
$$ {#eq-linear}

Gives

𝑌 ∼ 𝑋𝛽0 + 𝑋𝛽1 + 𝜖 (16.1)

You can then refer to the equation in text using @eq-linear:

Our model is given in Equation 16.1.

101

102 16 Captioning and referencing equations

16.3 Other equation-adjacent referencing
You can also use and reference theorems, lemmas, conjectures, and many more
- to see these, see the Quarto documentation: theorems and proofs documen-
tation.

https://quarto.org/docs/authoring/cross-references.html#theorems-and-proofs
https://quarto.org/docs/authoring/cross-references.html#theorems-and-proofs

17
Common Problems with Quarto (and some
solutions)

There are some things that I run into fairly frequently (and some not so
much) when I’m rendering my Quarto documents. This section details some
the common problems, and the solution that I have found works for me.

Your Turn

1. Using “06-qmd-find-errors.qmd”

• Fix all the problems and get the document to render

1. Go to this repo njtierney/qmd-errors, and give debugging
some of these common Quarto errors a go.

You can download this repository by running this code:
usethis::use_course("njtierney/qmd-errors")

17.1 More practice?
If you want to practice fixing broken Quarto documents, check out some patho-
logically broken examples on github at github.com/njtierney/qmd-errors.

17.2 Avoiding problems
To avoid problems in the first place, I try and do the following:

• Develop code in chunks and execute the chunks until they work, then move
on.

• Render the document regularly to check for errors.

103

https://github.com/njtierney/qmd-errors
https://github.com/njtierney/qmd-errors

104 17 Common Problems with Quarto (and some solutions)

Then, if there is an error:

• Recreate the error in an interactive session:
– restart R
– run all chunks below
– find the chunk that did not work, fix until it does
– run all chunks below
– explore working directory issues

∗ remember that the Quarto directory is where the .qmd file lives

17.3 The errors
What follows from here are all the errors you might in an Quarto document,
with the following structure:

• What they might look like
• What the error message might appear to be, and
• How to solve them

17.3.1 Python not found
An error like:

Error:
! /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/config-3.7m-darwin/libpython3.7.dylib - dlopen(/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/config-3.7m-darwin/libpython3.7.dylib, 0x000A): tried: '/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/config-3.7m-darwin/libpython3.7.dylib' (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64e' or 'arm64')), '/System/Volumes/Preboot/Cryptexes/OS/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/config-3.7m-darwin/libpython3.7.dylib' (no such file), '/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/config-3.7m-darwin/libpython3.7.dylib' (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64e' or 'arm64')), '/Library/Frameworks/Python.framework/Versions/3.7/Python' (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64e' or 'arm64')), '/System/Volumes/Preboot/Cryptexes/OS/Library/Frameworks/Python.framework/Versions/3.7/Python' (no such file), '/Library/Frameworks/Python.framework/Versions/3.7/Python' (mach-o file, but is an incompatible architecture (have 'x86_64', need 'arm64e' or 'arm64')), '/System/Library/Frameworks/Python.framework/Versions/3.7/Python' (no such file, not in dyld cache)

Backtrace:
1. global .main()
2. execute(...)
3. rmarkdown::render(...)
4. knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet)
5. knitr:::process_file(text, output)

...
17. reticulate:::initialize_python()
18. base::tryCatch(...)
19. base (local) tryCatchList(expr, classes, parentenv, handlers)
20. base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]])
21. value[[3L]](cond)

This error went away when I installed python - I went to
https://www.python.org/downloads/ and followed the prompts

17.3 The errors 105

17.3.2 No julia
Error in `loadNamespace()`:
! there is no package called 'JuliaCall'
Backtrace:
1. global .main()

14. base::loadNamespace(x)
15. base::withRestarts(stop(cond), retry_loadNamespace = function() NULL)
16. base (local) withOneRestart(expr, restarts[[1L]])
17. base (local) doWithOneRestart(return(expr), restart)

Fix: Install JuliaCall R package:
install.packages("JuliaCall")

17.3.3 “Duplication”: Duplicated chunk names
What it might look like

Chunks like this:
```{r}
#| label: repeated
1+1
```

```{r}
#| label: repeated



106 17 Common Problems with Quarto (and some solutions)

2+2
```

The error message

This is caught before the document compiles with a warning like:

processing file: duplicated-chunk-names.qmd
Error in parse_block(g[-1], g[1], params.src, markdown_mode) :
Duplicate chunk label 'repeated', which has been used for the chunk:

1+1
Calls: .main ... process_file -> split_file -> lapply -> FUN -> parse_block
Execution halted

The important part to note is the start:

.

.

.
Duplicate chunk label 'repeated', which has been used for the chunk:
1+1
.
.
.

How to solve

• In our case we have the same chunk name twice: ‘repeated’. Change the
chunk name of one of them!

17.3.4 “Not what I ordered”: Objects not created in the right
order

What it might look like
plot(my_table)

my_table <- table(mtcars$cyl)

The error message

processing file: wrong-order.qmd
|...................................... | 67% [plot-table]Error:

! object 'my_table' not found
Backtrace:
1. base::plot(my_table)

17.3 The errors 107

Quitting from lines 8-12 [plot-table] (wrong-order.qmd)

How to solve

There is a good clue at the end of this message here, stating:

.

.
Quitting from lines 8-12 [plot-table] (wrong-order.qmd)
.
.

The template here is:

Quitting from lines START-END [CHUNK LABEL] (QUARTO-DOCUMENT-NAME.qmd)

I would then navigate to those lines of code in the Quarto document, or search
for the chunk label, and see if I can run that code interactively. A common
problem with these kinds of errors is that they just might work interactively,
because you might have run them out of sequence. However because a Quarto
document goes from a fresh R session and runs the code from the top to the
bottom in that order, the objects might not yet exist. So:

1. Restart R - ensure it is a clean session without objects from the
previous session hanging around

2. Run code above the problem chunk
3. Run code in the problem chunk
4. Hopefully this reproduces your error
5. If it doesn’t reproduce your error, consider trying to make a small

reprex of the problem so you have try and figure out the bug.

17.3.5 Forgotten Trails I: Missing “(”, or “}”
What it might look like
```{r}
#| label: fig-volcano
#| eval: false
image(volcano
```

The error message

processing file: forgotten-trails-i.qmd
|..................................... | 67% [fig-volcano]Error in `parse()`:

! <text>:2:0: unexpected end of input
1: image(volcano

^
Backtrace:

https://reprex.tidyverse.org/
https://reprex.tidyverse.org/

108 17 Common Problems with Quarto (and some solutions)

1. global .main()
2. execute(...)
3. rmarkdown::render(...)
4. knitr::knit(knit_input, knit_output, envir = envir, quiet = quiet)
5. knitr:::process_file(text, output)

...
11. knitr:::eng_r(options)
14. knitr (local) evaluate(...)
15. evaluate::evaluate(...)
17. evaluate:::parse_all.character(...)
18. base::parse(text = x, srcfile = src)

Quitting from lines 7-9 [fig-volcano] (forgotten-trails-i.qmd)

Execution halted

How to solve

In this case the key part to look at is

|..................................... | 67% [fig-volcano]Error in `parse()`:
! <text>:2:0: unexpected end of input
1: image(volcano

^

Here the error message even points to the image code, and the message, “un-
expected end of input” is referring to the missing closing parenthesis.

What it might look like
```{r
#| label: fig-volcano
image(volcano)
```

The error message

There is no error message here, but your output might look like this:

17.3 The errors 109

Forgotten Trails I: Missing “(”, or “}”
{r #| label: fig-volcano image(volcano)

How to solve

The clue here for me is that we are getting this part of the code:

{r #| label: fig-volcano image(volcano)

When we would normally not see any information about the code chunk option,
#| label.

When you come across some funky looking text like that, look for a missing
}.

17.3.6 “Forgotten Trails II”: Chunk option with trailing “, or
not input

What it might look like

The error message

ERROR: YAMLException: unexpected end of the stream within a double quoted scalar (forgotten-trails-ii.qmd, 8:188)
7: #| label: fig-volcano
8: #| fig-cap: "An elevation plot of Maunga Whau (Mt Eden). Darker colours indicate higher parts of the volcano. We see one main peak on the left, followed by two smaller peaks on the right.

~
9: image(volcano)

How to solve it?

• The clue here is unexpected end of the stream within a double
quoted scalar. Which, although it might sound a bit obtuse, is referring
to a missing quote. The other clue is that the error captures the code chunk
information and prints it out to the console.

• When you are working with this code in RStudio it also highlights the error:

110 17 Common Problems with Quarto (and some solutions)

17.3.7 “The Path Not Taken” File path incorrect
What it might look like
```{r}
#| label: read-data
#| echo: fenced
#| eval: false
library(readr)
penguins <- read_csv("the_penguins.csv")
```

The error message

processing file: path-not-taken.qmd
|....................................... | 67% [read-data]Error:

! 'the_penguins.csv' does not exist in current working directory ('/Users/nick/github/njtierney/qmd-errors').
Backtrace:
1. readr::read_csv("the_penguins.csv")
4. vroom (local) `<fn>`("the_penguins.csv")
5. vroom:::check_path(path)

Quitting from lines 7-10 [read-data] (path-not-taken.qmd)

Execution halted

How to solve

The key part to pay attention to here is:

Error:! 'the_penguins.csv' does not exist in current working directory ('/Users/nick/github/njtierney/qmd-errors').

In this case, we need to ensure that the data file is in the right spot - in our
example we have a typo - the data should be “data/penguins.csv”.

17.3.8 “Spolling I” Incorrectly spelled chunk options
These are often not an error, but you just won’t get the behaviour that you
expect.

What it might look like
```{r}
#| label: fig-penguins
#| fig-caption: "Penguin Bill Length against Flipper Length. coloured by species. Each dot represents the bill length and flipper length of a penguin, coloured by species (Adelie, Chinstrap, Gentoo), and facetted by the three islands (Biscoe, Dream, Torgensen). We learn that not all three species are present on all islands, only Adelie is present on each. Adelie generally has the smallest flipper and bill length of the penguins, with chinstrap and gentoo being similar. Flipper length is correlated with bill length."
#| echo: fenced
library(palmerpenguins)
library(ggplot2)



17.3 The errors 111

ggplot(penguins,
aes(x = flipper_length_mm,

y = bill_length_mm,
colour = species)) +

geom_point() +
scale_color_brewer(palette = "Dark2") +
theme_minimal() +
facet_wrap(~island)

```

Above we have @fig-counts...

In this case we do not get a rendered caption at all:

112 17 Common Problems with Quarto (and some solutions)

The root cause of this is that we have specified fig-caption instead of
fig-cap.

This once caused me to rewrite a lot of code and an entire section of a paper
until I realised the problem.

The error message

There is no error message for this! It is a silent error.

How to solve

You can resolve this issue by using fig-cap instead of fig-caption.

17.3 The errors 113

17.3.9 “Spolling II” Incorrectly spelled chunk option inputs
So this is when you provide the wrong input to your chunk options. Like
something that requires true gets “yes”, or something that needs "100%"
instead gets 100

What it might look like

The error message

==> quarto preview spolling-ii.qmd --to html --no-watch-inputs --no-browse

(line 8, columns 11--14) Field "cache" has value yes, which must instead be `true` or `false`

� The value yes is a string.
� The error happened in location cache.
� Quarto uses YAML 1.2, which interprets booleans strictly.
� Try using true instead.

ERROR: Validation of YAML cell metadata failed.
ERROR: Render failed due to invalid YAML.

How to solve

There’s a bit of text here, but the key piece is:

(line 8, columns 11--14) Field "cache" has value yes, which must instead be `true` or `false`

We have specified #| cache: yes instead of #| cache: true. A good thing
to internalise here is that Quarto always uses lowercase true or false and
never yes or no.

17.3.10 “The Legend of Link I”: Your images in don’t
work.

I often forget that it is , and not .
There are no quote marks!

114 17 Common Problems with Quarto (and some solutions)

17.3.11 LaTeX errors
There is no panacea for LaTeX errors, but if you aren’t familiar with “what
that error message” might look like, here are some details.

What it might look like

The error message

How to solve

17.3.12 I want to include inline R code verbatim to show an
example

… Like for a book on using Quarto or something.

17.3 The errors 115

You can use the chunk option echo: fenced. See the Quarto documentation
on fenced echo for more details.

Tip

Back before we had this option we used to have to do things like this:
blog post by T. Hovorka from R Views
It boils down to this:
r "\u0060r expression\u0060" .

Thankfully the folks at Quarto have made this much easier!

17.3.13 My Figure or Table isn’t being cited
What it might look like

You create a figure,

The error message

There isn’t one - you just get @fig-chunk-name printed.

How to solve

You need to make sure that you actually print the table or plot. If you create
the plot and save it, but do not print it in the document, then you will not
be able to reference the plot or table.

17.3.14 ::: {.cell} appears in my quarto document
Generally look for a missing ::: partner - however sometimes I do find this
problem a bit sticky!

https://quarto.org/docs/computations/execution-options.html#fenced-echo
https://quarto.org/docs/computations/execution-options.html#fenced-echo
https://rviews.rstudio.com/2017/12/04/how-to-show-r-inline-code-blocks-in-r-markdown/

18
Different Outputs and Extensions

There are many different outputs for Quarto - as a start, THIS VERY BOOK
IS WRITTEN IN QUARTO! How cool is that? I think it’s pretty cool.

What’s especially great is that the extra barriers to moving from one format
to another are relatively low. Generally speaking, the things that you will
change in your overall setup are:

• Adding a _quarto.yml file
– Making some changes inside this file to tell it whether it is a

book/manuscript/slideshow

There are some small differences in how files are setup, but by and large the
work that you need to do will be on the writing of the content, and your code.
Which is good! That’s where we want out focus to be.

18.1 Alternative output formats
• Write a book
• Build a website
• Create a simple dashboard
• Use shiny with Quarto
• Generate multiple reports with parameterised reports - blog post by Mike

Mahoney, blog post by Mandy Norrbo
• typst (like a next-generation LaTeX - still new.)

18.1.1 Slideshows / Presentations
• HTML: revealjs
• PDF: beamer
• powerpoint

18.1.2 Quarto Manuscripts
Quarto manuscripts are a relatively new feature in quarto. They essentially

117

https://quarto.org/docs/books/
https://quarto.org/docs/websites/
https://quarto.org/docs/dashboards/
https://quarto.org/docs/interactive/shiny/
https://quarto.org/docs/computations/parameters.html
https://www.mm218.dev/posts/2022-08-04-how-to-use-quarto-for-parameterized-reporting/
https://www.mm218.dev/posts/2022-08-04-how-to-use-quarto-for-parameterized-reporting/
https://www.jumpingrivers.com/blog/r-parameterised-presentations-quarto/
https://quarto.org/docs/output-formats/typst.html
https://quarto.org/docs/presentations/revealjs/
https://quarto.org/docs/presentations/beamer.html
https://quarto.org/docs/presentations/powerpoint.html
https://quarto.org/docs/manuscripts/

118 18 Different Outputs and Extensions

help you share a bundled folder with the journal document, the rendered code,
and other bits and pieces. In a future version of this book I will discuss using
these in your writing.

18.1.3 Quarto Extensions
Quarto has an official extensions API, you can see all their extensions on their
extensions page. Perhaps the most relevant is the journal extensions page,
which I discuss below. For more information on creating extensions, see their
creating extensions page.

18.1.3.1 For Journals

Quarto has provided a substantial list of supported journal formats in the
journal listings Quarto extensions page. This is similar to rticles in rmarkdown.

18.1.3.2 Other extensions

Other formats and extensions for PDF, for example, the hikmah.pdf extension
by Andrew Heiss.

These can be found at the Quarto Custom Formats Page.

https://quarto.org/docs/extensions/
https://quarto.org/docs/extensions/creating.html
https://quarto.org/docs/extensions/listing-journals.html
https://cran.r-project.org/web/packages/rticles/index.html
https://github.com/andrewheiss/hikmah-academic-quarto
https://www.andrewheiss.com/
https://quarto.org/docs/extensions/listing-formats.html

19
Next Steps

So now you’ve got a handle on Quarto, what are some of the other things to
think about learning? Here are some of my recommendations.

19.1 Learn how to use git and github
git is a version control system. Not sure what a version control system is? No
worries, let me explain. If you’ve ever named a document something like:

Final
Final 2
Really final

Relevant PhD comics link

Or even if you have something like:

• 2018-10-10-document.qmd
• 2018-10-11-document.qmd

These are ways of managing which version you have.

To learn git and github, I’d highly recommend Happy Git with R by Jenny
Bryan, the STAT 545 TAs, and Jim Hester

19.2 Learn how to make reproducible examples
(See https://github.com/njtierney/reprex-essentials for more examples)

(The following is an excerpt from my blog post, “How to get good at R”)

When you run into a problem, or an error, if you can’t work out the answer
after some tinkering about, it can be worthwhile spending some time to con-
struct a small example of the code that breaks. This takes a bit of time, and

119

http://phdcomics.com/comics/archive.php?comicid=1531
https://happygitwithr.com/
https://jennybryan.org/
https://jennybryan.org/
https://stat545.com/
https://www.jimhester.com/
https://www.njtierney.com/post/2023/11/10/how-to-get-good-with-r/

120 19 Next Steps

could be its own little blog post. It takes practice. But in the process of reduc-
ing the problem down to its core components, I often can solve the problem
myself. It’s kind of like that experience of when you talk to someone to try
and describe a problem that you are working on, and in talking about it, you
arrive at a solution.

There is a great R package that helps you create these reproducible examples,
called reprex, by Jenny Bryan. I’ve written about the reprex package here

For the purposes of illustration, let’s briefly tear down a small example using
the somewhat large dataset of diamonds
library(tidyverse)

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.4 v readr 2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.1 v tibble 3.2.1
v lubridate 1.9.4 v tidyr 1.3.1
v purrr 1.0.4
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
diamonds

A tibble: 53,940 x 10
carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39
i 53,930 more rows

Let’s say we had a few steps involved in the data summary of diamonds data:
diamonds %>%
mutate(
price_per_carat = price / carat

) %>%
group_by(

https://reprex.tidyverse.org/
https://jennybryan.org/
https://www.njtierney.com/post/2017/01/11/magic-reprex/

19.2 Learn how to make reproducible examples 121

cut
) %>%

summarise(
price_mean = mean(price_per_carat),
price_sd = sd(price_per_carat),
mean_color = mean(color)

)

Warning: There were 5 warnings in `summarise()`.
The first warning was:
i In argument: `mean_color = mean(color)`.
i In group 1: `cut = Fair`.
Caused by warning in `mean.default()`:
! argument is not numeric or logical: returning NA
i Run `dplyr::last_dplyr_warnings()` to see the 4 remaining warnings.

A tibble: 5 x 4
cut price_mean price_sd mean_color
<ord> <dbl> <dbl> <dbl>

1 Fair 3767. 1540. NA
2 Good 3860. 1830. NA
3 Very Good 4014. 2037. NA
4 Premium 4223. 2035. NA
5 Ideal 3920. 2043. NA

We get a clue that the error is in the line mean_color, so let’s just try and do
that line:
diamonds %>%
mutate(
mean_color = mean(color)

)

Warning: There was 1 warning in `mutate()`.
i In argument: `mean_color = mean(color)`.
Caused by warning in `mean.default()`:
! argument is not numeric or logical: returning NA

A tibble: 53,940 x 11
carat cut color clarity depth table price x y z mean_color
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43 NA
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31 NA
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31 NA
4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63 NA
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75 NA
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48 NA

122 19 Next Steps

7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47 NA
8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53 NA
9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49 NA
10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39 NA
i 53,930 more rows

We still get that error, so what if we just do
mean(diamonds$color)

Warning in mean.default(diamonds$color): argument is not numeric or logical:
returning NA

[1] NA

OK same error. What is in color?
head(diamonds$color)

[1] E E E I J J
Levels: D < E < F < G < H < I < J

Does it really make sense to take the mean of some letters? Ah, of course not!

20
References

Quarto website

The Posit cheatsheet

R For Data Science section on Quarto

Extending word templates: https://quarto.org/docs/output-formats/ms-
word-templates.html

happy git with r

123

https://quarto.org/
https://rstudio.github.io/cheatsheets/html/quarto.html
https://r4ds.hadley.nz/quarto
http://happygitwithr.com/

21
Acknowledgements

This books was first written to be a guide for a course run by the Statis-
tics Society Australia (SSA), and Melbourne Integrative Genomics (MIG) on
November 12, 2018. Initially written as “Rmarkdown for Scientists”, “Quarto
for Scientists” takes the same format and makes it about Quarto.

I’d like to first thank Miles McBain, for his working book, “Git For Scientists”.
This book inspired the structure and workflow of this existing book.

I’d also like to thank Karthik Ram, Yoav Ram, Martin Fenner, Puneet Kishor,
and Jonathan Dugan, involved with the Scholarly Markdown site. This has
helped inform some of the structure of this book. I’d also like to thank Patrick
Robotham for his helpful discussions when first creating this book.

There have been various wonderful contributions from the community to fix
typos in this book, I would like to thank Allison Presmanes Hill PR1, PR2, as
well as the many offline helpful conversations about serving this book online
and other matters. I’d also like to thank Murray Cadzow PR, and Federico
Marini PR, and Raymond B Huey for their thoughtful contributions.

125

http://github.com/milesMcBain
https://milesmcbain.github.io/git_4_sci/index.html
https://web.archive.org/web/20210726210541/http://scholmd.org/
https://www.linkedin.com/in/patrick-robotham-5499699/?originalSubdomain=au
https://www.linkedin.com/in/patrick-robotham-5499699/?originalSubdomain=au
https://github.com/apreshill
https://github.com/njtierney/rmd4sci/pull/15
https://github.com/njtierney/rmd4sci/pull/16
https://github.com/murraycadzow
https://github.com/njtierney/rmd4sci/pull/26
https://github.com/federicomarini
https://github.com/federicomarini
https://github.com/njtierney/rmd4sci/pull/28
https://raymond-b-huey.netlify.app/

A
Visual mode

This section will be best demonstrated live in the course.

But needless to say, some things worth checking out:

• citing papers in a linked .bib file
• insert anything shortcut
• insert table

Warn against potential issues that may arise due to text changes from swap-
ping to visual model

There is also a VS Code extension for visual mode, which this book does not
(currently) focus on.

127

https://quarto.org/docs/visual-editor/vscode/

B
Using Zotero with Quarto

https://quarto.org/docs/visual-editor/technical.html#citations-from-zotero

129

https://quarto.org/docs/visual-editor/technical.html#citations-from-zotero

C
Templates

C.1 Controlling the outputs
Depending on the output type, HTML, PDF, or word, you can actually control
how the document looks

C.1.1 Options for HTML
Some common options for HTML include:

• Adding tab sets
• floating table of contents

C.1.2 Options for PDF
• Adding page breaks
• injecting LaTeX into your Quarto document

C.1.3 Options for Word
• templates using .doct files

C.2 How do I set options specific to each output
Sometimes you might want to have specific output changes to

131

D
FAQ

(A place for questions)

D.1 How can I include a screenshot of an interactive
graphic in PDF or Word?

You might wish to include a screenshot of an interactive graphic you had in
your HTML document. To do this, you can use the webshot2 package

133

E
HTML document extensions

Some common options for HTML include:

• Adding tab sets
• floating table of contents

E.0.1 Adding Tab sets
A tab set looks like the following:
Example tab set {.tabset}

Tab 1

> Lorem ipsum dolor sit amet, consectetur adipiscing elit. Quisque sed eleifend velit. Sed porta pulvinar lorem ut rutrum. Etiam quis cursus libero. Donec nibh nisl, auctor quis sem in, feugiat convallis odio. Ut at euismod ligula. Nullam vitae quam non lacus scelerisque tempus. Sed tincidunt massa non nunc tincidunt feugiat. In hac habitasse platea dictumst.

Tab 2

```{r}
#| label: tab-plot
plot(iris$Sepal.Length, iris$Sepal.Width)
```

To add a tab set, you include {.tabset} after your heading

E.0.2 Floating table of contents
A floating table of contents can be added with the following lines in the YAML
header:

title: "Your title"
author: "Your name"
output:
html_document:
toc: true
toc_float: true

135

136 E HTML document extensions

Your Turn

1. Add tab sets to your document
2. Add a floating table of contents

Using manuscripts in your writing

137

	About this
	About this
	Why write this as a book?
	How to use this book
	Licence

	License
	License
	Installation
	Overview
	Questions
	Software Setup
	R
	RStudio
	Quarto

	Checking you are up to date
	A note on PDF
	PDF / LaTeX Pain
	Problem solving with LaTeX

	Test Script

	Why Quarto
	Overview
	Questions
	Objectives
	Reproducibility is a problem
	Literate programming is a partial solution
	Markdown as a new player to legibility
	A brief example of markdown

	What about Rmarkdown?
	Quarto helps complete the solution to the reproducibility problem
	Summary
	Learning more

	RStudio, What and Why
	Overview
	Questions
	Objectives
	What is RStudio, and why should I use it?
	Learning more

	Workflow
	Overview
	Questions
	Objectives
	When you start a new project: Open a new RStudio project
	So what does this do?

	What is a file path?
	Is there an answer to the madness?
	The ``here'' package
	Remember

	Summary
	Using Quarto
	Overview
	Questions
	Objectives
	The anatomy of a Quarto document
	Metadata
	Text
	Code

	R
	python
	julia
	Chunk names

	Code chunk options
	Inline code

	Creating a Quarto document
	Working with a Quarto document
	Nick's Quarto starter pack

	HTML, PDF, and Word (and more!)
	Overview
	Questions
	Objectives
	How do I convert to HTML, PDF, or Word?
	A note on workflow with Quarto: HTML first, PDF/word later

	How to make a HTML page ``self contained''

	Keyboard Shortcuts
	Overview
	Questions
	Objectives
	Table of Common Shortcuts
	Further Reading

	Figures, Tables, Captions.
	Overview
	Questions
	Objectives
	Tables
	Demonstrating using tables

	Figures
	Adding multiple (sub) figures and (sub) captions

	Inserting images
	Summary

	Customising your figures
	Overview
	Questions
	Objectives
	Which chunk options should you care about for this?
	Setting global options
	Altering where figures are saved to
	Further Reading

	Math
	Overview
	Questions
	Anatomy of Equations
	Example math commands
	Further Reading:

	Citing Figures, Tables & Sections
	Overview
	Questions
	Objectives
	How to refer to tables and figures in text? (demo)
	Referencing a table
	Other things you can cross/reference
	Referencing a section

	Citing Articles & Bibliography Styles
	Overview
	Questions
	Objectives
	How to cite things
	What is a .bib file?
	And how do I generate these .bib files?

	How to change the bibliography style
	How to move the bibliography location
	How to not print / suppress the bibliography?

	Captioning and referencing equations
	Overview
	Questions
	Numbering equations

	Other equation-adjacent referencing

	Common Problems with Quarto (and some solutions)
	More practice?
	Avoiding problems
	The errors
	Python not found
	No julia
	``Duplication'': Duplicated chunk names
	``Not what I ordered'': Objects not created in the right order
	Forgotten Trails I: Missing ``('', or ``}''
	``Forgotten Trails II'': Chunk option with trailing ``, or not input
	``The Path Not Taken'' File path incorrect
	``Spolling I'' Incorrectly spelled chunk options
	``Spolling II'' Incorrectly spelled chunk option inputs
	``The Legend of Link I'': Your images in don't work.
	LaTeX errors
	I want to include inline R code verbatim to show an example
	My Figure or Table isn't being cited
	::: {.cell} appears in my quarto document

	Different Outputs and Extensions
	Alternative output formats
	Slideshows / Presentations
	Quarto Manuscripts
	Quarto Extensions

	Next Steps
	Learn how to use git and github
	Learn how to make reproducible examples

	References
	Acknowledgements
	Appendices
	Visual mode
	Using Zotero with Quarto
	Templates
	Controlling the outputs
	Options for HTML
	Options for PDF
	Options for Word

	How do I set options specific to each output

	FAQ
	How can I include a screenshot of an interactive graphic in PDF or Word?

	HTML document extensions
	Adding Tab sets
	Floating table of contents

	Using manuscripts in your writing

